Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9150, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644364

RESUMO

Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.


Assuntos
DNA Topoisomerases Tipo II , Carcinoma de Células Escamosas de Cabeça e Pescoço , Inibidores da Topoisomerase II , Humanos , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Animais , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Embrião de Galinha
2.
Cancers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610940

RESUMO

Transthyretin binders have previously been used to improve the pharmacokinetic properties of small-molecule drug conjugates and could, thus, be utilized for radiopharmaceuticals as an alternative to the widely explored "albumin binder concept". In this study, a novel PSMA ligand modified with a transthyretin-binding entity (TB-01) was synthesized and labeled with lutetium-177 to obtain [177Lu]Lu-PSMA-TB-01. A high and specific uptake of [177Lu]Lu-PSMA-TB-01 was found in PSMA-positive PC-3 PIP cells (69 ± 3% after 4 h incubation), while uptake in PSMA-negative PC-3 flu cells was negligible (<1%). In vitro binding studies showed a 174-fold stronger affinity of [177Lu]Lu-PSMA-TB-01 to transthyretin than to human serum albumin. Biodistribution studies in PC-3 PIP/flu tumor-bearing mice confirmed the enhanced blood retention of [177Lu]Lu-PSMA-TB-01 (16 ± 1% IA/g at 1 h p.i.), which translated to a high tumor uptake (69 ± 13% IA/g at 4 h p.i.) with only slow wash-out over time (31 ± 8% IA/g at 96 h p.i.), while accumulation in the PC-3 flu tumor and non-targeted normal tissue was reasonably low. Further optimization of the radioligand design would be necessary to fine-tune the biodistribution and enable its use for therapeutic purposes. This study was the first of this kind and could motivate the use of the "transthyretin binder concept" for the development of future radiopharmaceuticals.

3.
EJNMMI Res ; 13(1): 32, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074529

RESUMO

PURPOSE: The angiotensin converting enzyme-2 (ACE2)-entry receptor of SARS-CoV-2-and its homologue, the angiotensin-converting enzyme (ACE), play a pivotal role in maintaining cardiovascular homeostasis. Potential changes in ACE2 expression levels and dynamics after SARS-CoV-2 infection have been barely investigated. The aim of this study was to develop an ACE2-targeting imaging agent as a noninvasive imaging tool to determine ACE2 regulation. METHODS: DOTA-DX600, NODAGA-DX600 and HBED-CC-DX600 were obtained through custom synthesis and labeled with gallium-67 (T1/2 = 3.26 d) as a surrogate radioisotope for gallium-68 (T1/2 = 68 min). ACE2- and ACE-transfected HEK cells were used for the in vitro evaluation of these radiopeptides. The in vivo tissue distribution profiles of the radiopeptides were assessed in HEK-ACE2 and HEK-ACE xenografted mice and imaging studies were performed using SPECT/CT. RESULTS: The highest molar activity was obtained for [67Ga]Ga-HBED-CC-DX600 (60 MBq/nmol), whereas the labeling efficiency of the other peptides was considerably lower (20 MBq/nmol). The radiopeptides were stable over 24 h in saline (> 99% intact peptide). All radiopeptides showed uptake in HEK-ACE2 cells (36-43%) with moderate ACE2-binding affinity (KD value: 83-113 nM), but no uptake in HEK-ACE cells (< 0.1%) was observed. Accumulation of the radiopeptides was observed in HEK-ACE2 xenografts (11-16% IA/g) at 3 h after injection, but only background signals were seen in HEK-ACE xenografts (< 0.5% IA/g). Renal retention was still high 3 h after injection of [67Ga]Ga-DOTA-DX600 and [67Ga]Ga-NODAGA-DX600 (~ 24% IA/g), but much lower for [67Ga]Ga-HBED-CC-DX600 (7.2 ± 2.2% IA/g). SPECT/CT imaging studies confirmed the most favorable target-to-nontarget ratio for [67Ga]Ga-HBED-CC-DX600. CONCLUSIONS: This study demonstrated ACE2 selectivity for all radiopeptides. [67Ga]Ga-HBED-CC-DX600 was revealed as the most promising candidate due to its favorable tissue distribution profile. Importantly, the HBED-CC chelator enabled 67Ga-labeling at high molar activity, which would be essential to obtain images with high signal-to-background contrast to detect (patho)physiological ACE2 expression levels in patients.

4.
Adv Biol (Weinh) ; 7(10): e2200229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36861331

RESUMO

Pancreatic cancer has a poor prognosis due to its aggressive nature and ability to metastasize at an early stage. Currently, its management is still a challenge because this neoplasm is resistant to conventional treatment approaches, among which is chemo-radiotherapy (CRT), due to the abundant stromal compartment involved in the mechanism of hypoxia. Hyperthermia, among other effects, counteracts hypoxia by promoting blood perfusion and thereby can enhance the therapeutic effect of radiotherapy (RT). Therefore, the establishment of integrated treatments would be a promising strategy for the management of pancreatic carcinoma. Here, the effects of joint radiotherapy/hyperthermia (RT/HT) on optimized chick embryo chorioallantoic membrane (CAM) pancreatic tumor models are investigated. This model enables a thorough assessment of the tumor-arresting effect of the combined approach as well as the quantitative evaluation of hypoxia and cell cycle-associated mechanisms by both gene expression analysis and histology. The analysis of the lower CAM allows to investigate the variation of the metastatic behaviors of the cancer cells associated with the treatments. Overall, this study provides a potentially effective combined strategy for the non-invasive management of pancreatic carcinoma.

5.
Nanoscale Adv ; 5(4): 1212-1219, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36798506

RESUMO

Skin burns are debilitating injuries with significant morbidity and mortality associated with infections and sepsis, particularly in immunocompromised patients. In this context, nanotechnology can provide pioneering approaches for the topical treatment of burnt skin. Herein, the significant recovery of radiation-damaged skin by exploiting copper ultrasmall-in-nano architectures (CuNAs) dispersed in a home-made cosmetic cream is described and compared to other noble metals (such as gold). Owing to their peculiar design and components, CuNAs elicit a substantial recovery from burned skin in in vivo models after one topical application, and a significant anti-inflammatory effect is highlighted by reducing cytokine expression. The treatment exhibited neither significant toxicity nor the alteration of copper metabolism in the target organs because of the CuNA biocompatibility. This study may open new horizons in the treatment of radiation dermatitis and skin burns caused by other external events.

6.
J Mater Chem B ; 11(2): 325-334, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36484416

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) are a complex group of malignancies that affect different body sites pertaining to the oral cavity, pharynx and larynx. Current chemotherapy relies on platinum complexes, the major exponent being cisplatin, which exert severe side effects that can negatively affect prognosis. For this reason, other metal complexes with less severe side effects are being investigated as alternatives or adjuvants to platinum complexes. In this context, exploiting (supra)additive effects by the concurrent administration of cisplatin and emerging metal complexes is a promising research strategy that may lead to effective cancer management with reduced adverse reactions. Here, the combined action of cisplatin and a ruthenium(II) η6-arene compound (RuCy), both as free molecules and loaded into hybrid nano-architectures (NAs), has been assessed on HPV-negative HNSCC models of increasing complexity: 2D cell cultures, 3D multicellular tumor spheroids, and chorioallantoic membranes (CAMs). Two new NAs have been established to explore all the delivery combinations and compare their ability to enhance the efficacy of cisplatin in the treatment of HNSCCs. A significant supra-additive effect has been observed in both 2D and 3D models by one combination of treatments, suggesting that cisplatin is particularly effective when loaded on NAs, whereas RuCy performs better when administered as a free compound. Overall, this work paves the way for the establishment of the next co-chemotherapeutic approaches for the management of HNSCCs.


Assuntos
Carcinoma de Células Escamosas , Complexos de Coordenação , Neoplasias de Cabeça e Pescoço , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma de Células Escamosas/patologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Platina/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
7.
Biomater Sci ; 10(21): 6135-6145, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36069269

RESUMO

The selective and localized delivery of active agents to neoplasms is crucial to enhance the chemotherapeutic efficacy while reducing the associated side effects. The encapsulation of chemotherapeutics in nanoparticles decorated with targeting agents is a strategy of special interest to improve drug delivery. However, serum protein adsorption often compromises the in vivo efficiency of targeting agents, leading to protein corona formation that interferes with the targeting process. Here, the enhanced efficacy of hybrid nano-architectures enclosing a platinum prodrug and decorated with a customized peptide (NAs-cisPt-Tf2) is demonstrated by employing alternative in vivo models of oral carcinoma. The peptide binds to transferrin and modulates the protein corona formation on NAs-cisPt-Tf2, supporting the identification of its receptor. Optimized chorioallantoic membrane cancer models (CAMs) enabled a thorough assessment of the tumor-suppressing effect of NAs-cisPt-Tf2 as well as the quantitative evaluation of angiogenesis and cell cycle associated mechanisms. The treatment strategy resulted in a significant tumor volume reduction coupled with anti-angiogenic and pro-apoptotic effects inferred from the downregulation of the vascular endothelial growth factor gene and increased expression of cleaved caspase-3. Overall, this study provides a potentially effective tumor-targeted approach for a non-invasive management of oral carcinoma.


Assuntos
Antineoplásicos , Carcinoma , Nanopartículas , Pró-Fármacos , Coroa de Proteína , Humanos , Pró-Fármacos/farmacologia , Platina , Caspase 3 , Fator A de Crescimento do Endotélio Vascular , Transferrina , Peptídeos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
8.
Cancers (Basel) ; 14(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35740699

RESUMO

Considering the dismal survival rate, novel therapeutic strategies are warranted to improve the outcome of pancreatic ductal adenocarcinoma (PDAC). Combining nanotechnology for delivery of chemotherapeutics-preferably radiosensitizing agents-is a promising approach to enhance the therapeutic efficacy of chemoradiation. We assessed the effect of biodegradable ultrasmall-in-nano architectures (NAs) containing gold ultra-small nanoparticles (USNPs) enclosed in silica shells loaded with cisplatin prodrug (NAs-cisPt) combined with ionizing radiation (IR). The cytotoxic effects and DNA damage induction were evaluated in PDAC cell lines (MIA PaCa2, SUIT2-028) and primary culture (PDAC3) in vitro and in the chorioallantoic membrane (CAM) in ovo model. Unlike NAs, NAs-cisPt affected the cell viability in MIA PaCa2 and SUIT2-028 cells. Furthermore, NAs-cisPt showed increased γH2AX expression up to 24 h post-IR and reduced ß-globin amplifications resulting in apoptosis induction at DNA and protein levels. Similarly, combined treatment of NAs-cisPt + IR in PDAC3 and SUIT2-028 CAM models showed enhanced DNA damage and apoptosis leading to tumor growth delay. Our results demonstrate an increased cytotoxic effect of NAs-cisPt, particularly through its release of the cisplatin prodrug. As cisplatin is a well-known radiosensitizer, administration of cisplatin prodrug in a controlled fashion through encapsulation is a promising new treatment approach which merits further investigation in combination with other radiosensitizing agents.

9.
Nano Lett ; 22(13): 5269-5276, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35770505

RESUMO

The intranasal administration of drugs allows an effective and noninvasive therapeutic action on the respiratory tract. In an era of rapidly increasing antimicrobial resistance, new approaches to the treatment of communicable diseases, especially lung infections, are urgently needed. Metal nanoparticles are recognized as a potential last-line defense, but limited data on the biosafety and nano/biointeractions preclude their use. Here, we quantitatively and qualitatively assess the fate and the potential risks associated with the exposure to a silver nanomaterial model (i.e., silver ultrasmall-in-nano architectures, AgNAs) after a single dose instillation. Our results highlight that the biodistribution profile and the nano/biointeractions are critically influenced by both the design of the nanomaterial and the chemical nature of the metal. Overall, our data suggest that the instillation of rationally engineered nanomaterials might be exploited to develop future treatments for (non)communicable diseases of the respiratory tract.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/uso terapêutico , Prata , Distribuição Tecidual
10.
Nanomaterials (Basel) ; 12(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335758

RESUMO

Many efforts have recently concentrated on constructing and developing nanoparticles (NPs) as promising thermal agent for optical hyperthermia and photothermal therapy. However, thermal energy transfer in biological tissue is a complex process involving different mechanisms such as conduction, convection, radiation. Therefore, having information about thermal properties of tissue especially when NPs are embedded in is a necessity for predicting the heat transfer during hyperthermia. In this work, the thermal properties of solid phantom based on agar in the presence of three different nanoparticles (BPSi, tNAs, GNRs) and alone were measured and reported as a function of temperature (ranging from 22 to 62 °C). The thermal response of these NPs to an 808 nm laser beam with three different powers were studied in the water comparatively. Agar and tNAs have almost constant thermal properties in the considered range. Among the three NPs, gold has the highest conductivity and diffusivity. At 62 °C BPSi NPs have the similar amount of increase for the diffusivity. The thermal parameters reported in this paper can be useful for the mathematical modeling. Irradiation of the NPs-loaded water phantom displayed the highest radiosensitivity of gold among the three mentioned NPs. However, for the higher power of irradiation, BPSi and tNAs NPs showed the increased absorption of heat during shorter time and the increased temperature gradient slope for the initial 15 s after the irradiation started. The three NPs showed different thermal and irradiation response behavior; however, this comparison study notes the worth of having information about thermal parameters of NPs-loaded tissue for pre-clinical planning.

11.
iScience ; 25(3): 103980, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35310338

RESUMO

The European Society for Medical Oncology (ESMO) suggests the use of chemotherapy as neoadjuvant, adjuvant, and concomitant to surgery and radiotherapy for the treatment of oral carcinoma by depending on the cancer stage. The usual drug of choice belongs to the platinum compounds. In this context, the evaluation of the cancer behavior associated with the administration of standard or emerging cisplatin compounds supports the establishment of optimal cancer management. Here, we have assessed and compared the performance of cisplatin alone and contained in biodegradable nanocapsules on standardized chorioallantoic membrane (CAM) tumor models. The vascularized environment and optimized grafting procedure allowed the establishment of solid tumors. The treatments showed antitumor and anti-angiogenic activities together with deregulation of pivotal genes responsible of treatment resistance and tumor aggressiveness. This study further supports the significance of CAM tumor models in oncological research for the comprehension of the molecular mechanisms involved in tumor treatment response.

12.
ACS Pharmacol Transl Sci ; 4(3): 1227-1234, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34151212

RESUMO

Preclinical cancer research increasingly demands sophisticated models for the development and translation of efficient and safe cancer treatments to clinical practice. In this regard, tumor-grafted chorioallantoic membrane (CAM) models are biological platforms that account for the dynamic roles of the tumor microenvironment and cancer physiopathology, allowing straightforward investigations in agreement to the 3Rs concept (the concept of reduction, refinement, and replacement of animal models). CAM models are the next advanced model for tumor biological explorations as well as for reliable assessment regarding initial efficacy, toxicity, and systemic biokinetics of conventional and emerging neoplasm treatment modalities. Here we report a standardized and optimized protocol for the production and biocharacterization of human papillomavirus (HPV)-negative head and neck chick chorioallantoic membrane models from a commercial cell line (SCC-25). Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. Thus, there is a persisting demand for new management approaches to establish more efficient strategies toward their treatment. Remarkably, the inclusion of CAM models in the preclinical research workflow is crucial to ethically foster both the basic and translational oncological research on oral malignancies as well as for the advancement of efficient cancer treatment approaches.

13.
Expert Opin Drug Metab Toxicol ; 17(8): 947-968, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33565346

RESUMO

Introduction: Advancements in cancer management and treatment are associated with strong preclinical research data, in which reliable cancer models are demanded. Indeed, inconsistent preclinical findings and stringent regulations following the 3Rs principle of reduction, refinement, and replacement of conventional animal models currently pose challenges in the development and translation of efficient technologies. The chick embryo chorioallantoic membrane (CAM) is a system for the evaluation of treatment effects on the vasculature, therefore suitable for studies on angiogenesis. Apart from vascular effects, the model is now increasingly employed as a preclinical cancer model following tumor-grafting procedures.Areas covered: The broad application of CAM tumor model is highlighted along with the methods for analyzing the neoplasm and vascular system. The presented and cited investigations focus on cancer biology and treatment, encompassing both conventional and emerging nanomaterial-based modalities.Expert opinion: The CAM tumor model finds increased significance given the influences of angiogenesis and the tumor microenvironment in cancer behavior, then providing a qualified miniature system for oncological research. Ultimately, the establishment and increased employment of such a model may resolve some of the limitations present in the standard preclinical tumor models, thereby redefining the preclinical research workflow.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Neovascularização Patológica/patologia , Animais , Embrião de Galinha , Membrana Corioalantoide , Humanos , Nanoestruturas , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Medicina de Precisão/métodos , Microambiente Tumoral
14.
Eur J Med Chem ; 212: 113143, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33445155

RESUMO

Current chemotherapy for head and neck squamous cell carcinomas (HNSCCs) are based on cisplatin, which is usually associated to severe side effects. In general, the exploration for metal-based alternatives to cisplatin has resulted in the development of a series of ruthenium complexes that are able to produce a safe therapeutic action against some neoplasms, among which are lung and ovarian cancers. Here, we evaluate the efficacy of well defined, easily available and robust ruthenium(II) η6-arene compounds on 3D models of HNSCCs with or without human papillomavirus (HPV) infection and compare their effects to the state-of-the-art RAPTA-C, a promising ruthenium compound with known anti-cancer activity. One of the compounds induces a significant therapeutic action especially on HPV negative carcinoma. Besides viability and repopulation evaluations, we performed quantitative analysis of the internalized Ru compounds to further validate our findings and elucidate the possible mechanisms of action. These results show that Ru arene compounds represent a promising alternative for the treatment of HNSCCs and pave the way for the composition of innovative (co)therapies.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Rutênio/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Rutênio/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Relação Estrutura-Atividade
15.
J Colloid Interface Sci ; 582(Pt B): 1003-1011, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927167

RESUMO

Synergistic combined treatments are currently practiced in clinics for the management of several neoplasms. While surgery, radiotherapy, and chemotherapy remain as the standards of care for monomodal and co-treatments, emerging modalities like hyperthermia (HT) demonstrate promising features as (neo)adjuvant, particularly for recurrent cancers. However, the clinical relevance of HT is still debated due to a number of challenges, such as tumor specific temperature increase, uneven heating of the target, and the lack of agents that concurrently execute HT in combination with radio- and/or chemotherapy. Here, the application of non-persistent ultrasmall-in-nano gold architectures for synergistic chemo-photothermal treatment of head and neck squamous cell carcinomas (HNSCCs) is presented. The nano-architectures are composed of excretable narrow near-infrared (NIR)-absorbing gold ultrasmall nanoparticles and an endogenously double controlled cisplatin prodrug. The efficiency of the nano-architectures is evaluated on three-dimensional (3D) models of HNSCCs with positive or negative human papillomavirus (HPV) status. The combined treatment causes a more pronounced antitumor action on HPV-positive HNSCCs. Overall, the findings demonstrate the potential clinical relevance of translatable noble metal-based synergistic treatments in tumors management.


Assuntos
Neoplasias de Cabeça e Pescoço , Hipertermia Induzida , Ouro , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Fototerapia , Carcinoma de Células Escamosas de Cabeça e Pescoço
16.
Cancers (Basel) ; 12(5)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344838

RESUMO

Negative or positive HPV-associated Head and Neck Squamous Cell Carcinomas (HNSCCs) are high recurrence neoplasms usually resulting in a poor prognosis, mainly due to metastasis formation. Despite the low overall patient survival rate and the severe side effects, the treatment of choice is still cisplatin-based chemotherapy. Here, we report a straightforward protocol for the production of high throughput 3D models of negative or positive HPV-associated HNSCCs, together with their employment in the therapeutic evaluation of gold ultrasmall-in-nano architectures comprising an endogenously-activatable cisplatin prodrug. Beyond enhancing the biosafety of cisplatin, our approach paves the way for the establishment of synergistic co-therapies for HNSCCs based on excretable noble metals.

17.
Nanoscale Adv ; 2(9): 3815-3820, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132776

RESUMO

Among an organism's entry portals, the respiratory tract is one of the most promising routes for non-invasive administration of therapeutics for local and systemic delivery. On the other hand, it is the subtlest to protect from environmental pollution and microbial occurrences. Here, the biokinetics, distribution, and clearance trends of gold ultrasmall-in-nano architectures administered through a single intranasal application have been quantitatively evaluated. Apart from reaching the lung parenchyma, the (bio)degradable nano-architectures are able to translocate as well to secondary organs and be almost completely excreted within 10 days. These findings further support the clinical relevance of plasmonic nanomaterials for oncology and infectious disease treatment and management. Notably, this investigation also provides crucial information regarding the associated risks as a consequence of the pulmonary delivery of nanoparticles.

18.
ACS Biomater Sci Eng ; 6(9): 4862-4869, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33395269

RESUMO

As a first approach, standard 2D cell culture techniques are usually employed for the screening of drugs and nanomaterials. Despite the easy handling, findings achieved on 2D cultures are often not efficiently translatable to in vivo preclinical investigations. Furthermore, although animal models are pivotal in preclinical studies, more strict directives have been implemented to promote the use of alternative biological systems. In this context, the development and integration into preclinical research workflow of 3D neoplasm models is particularly appealing to promote the advancement and success of therapeutics in clinical trials while reducing the number of in vivo models. Indeed, 3D tumor models bridge several discrepancies between 2D cell culture and in vivo models, among which are morphology, polarity, drug penetration, osmolality, and gene expressions. Here, we comprehensively describe a robust and high-throughput hanging drop protocol for the production of 3D models of both Human Papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinomas (HNSCCs). We also report the standard cascade assays for their characterization and demonstrate their significance in investigations on these aggressive neoplasms. The employment of relevant 3D cancer models is pivotal to produce more reliable and robust findings in terms of biosafety, theranostic efficacy, and biokinetics as well as to promote further knowledge on HNSCC pathophysiology.


Assuntos
Neoplasias de Cabeça e Pescoço , Animais , Técnicas de Cultura de Células , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Nanomedicina Teranóstica
19.
ACS Appl Bio Mater ; 2(10): 4464-4470, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021406

RESUMO

Effective excretion of nanostructured noble metals is still one of the most challenging bottlenecks for their employment in clinical practice. Besides the persistence issue, the clinical translation of inorganic nanomaterials is also affected by a bewildering lack of investigations regarding their quantitative biokinetics. Here, we have quantitatively correlated the chemical nature of the three most interesting noble metals for biomedical applications to their biosafety and biokinetics in, respectively, zebrafish and murine models. Gold, silver, and platinum ultrasmall-in-nano architectures with comparable size elicit, after intravenous administration, different excretion pathways depending on their intrinsic metallic nature. Understanding the in vivo fate of noble metal nanoparticles is a significant breakthrough to unlock their clinical employment for the establishment of treatments for neoplasms, infectious diseases, and neurological disorders.

20.
ACS Omega ; 3(9): 11796-11801, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30320273

RESUMO

Several nanomaterials rely on the passive accumulation in the neoplasm target because of enhanced permeability and retention effect. On the other hand, directing nanomaterials to the target by employing the targeting agents may lead to a pivotal improvement in the efficacy of the treatment for a number of cancers. However, targeting moieties often lose their functionality upon injection in the bloodstream, leaving questions on their efficiency. Here, we assessed using a significant in vitro 3D model of pancreatic carcinoma the targeting efficiency of passion fruit-like nanoarchitectures (NAs) incorporated with a peptide that can recognize transferrin directly in the medium, thereby modulating protein solvation. NAs are biodegradable ultrasmall-in-nano platforms that combine the most appealing behaviors of noble metal nanomaterials with organism excretion of the building blocks by the renal pathway. Although the confocal images did not illustrate the significant differences in the targeting efficiency of the peptide-modified NAs, an improved internalization was quantitatively observed by inductively coupled plasma-mass spectrometry analysis. Our findings demonstrate that the peptide conjugation of NAs might be considered to enhance their theranostic potentials for this type of neoplasm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...