Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 13406-13414, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722052

RESUMO

Solvation shells strongly influence the interfacial chemistry of colloidal systems, from the activity of proteins to the colloidal stability and catalysis of nanoparticles. Despite their fundamental and practical importance, solvation shells have remained largely undetected by spectroscopy. Furthermore, their ability to assemble at complex but realistic interfaces with heterogeneous and rough surfaces remains an open question. Here, we apply vibrational sum frequency scattering spectroscopy (VSFSS), an interface-specific technique, to colloidal nanocrystals with porous metal-organic frameworks (MOFs) as a case study. Due to the porous nature of the solvent-particle boundary, MOF particles challenge conventional models of colloidal and interfacial chemistry. Their multiweek colloidal stability in the absence of conventional surface ligands suggests that stability may arise in part from solvation forces. Spectra of colloidally stable Zn(2-methylimidazolate)2 (ZIF-8) in polar solvents indicate the presence of ordered solvation shells, solvent-metal binding, and spontaneous ordering of organic bridging linkers within the MOF. These findings help explain the unexpected colloidal stability of MOF colloids, while providing a roadmap for applying VSFSS to wide-ranging colloidal nanocrystals in general.

2.
J Am Chem Soc ; 145(11): 6257-6269, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36893341

RESUMO

Redox intercalation involves coupled ion-electron motion within host materials, finding extensive application in energy storage, electrocatalysis, sensing, and optoelectronics. Monodisperse MOF nanocrystals, compared to their bulk phases, exhibit accelerated mass transport kinetics that promote redox intercalation inside nanoconfined pores. However, nanosizing MOFs significantly increases their external surface-to-volume ratios, making the intercalation redox chemistry into MOF nanocrystals difficult to understand due to the challenge of differentiating redox sites at the exterior of MOF particles from the internal nanoconfined pores. Here, we report that Fe(1,2,3-triazolate)2 possesses an intercalation-based redox process shifted ca. 1.2 V from redox at the particle surface. Such distinct chemical environments do not appear in idealized MOF crystal structures but become magnified in MOF nanoparticles. Quartz crystal microbalance and time-of-flight secondary ion mass spectrometry combined with electrochemical studies identify the existence of a distinct and highly reversible Fe2+/Fe3+ redox event occurring within the MOF interior. Systematic manipulation of experimental parameters (e.g., film thickness, electrolyte species, solvent, and reaction temperature) reveals that this feature arises from the nanoconfined (4.54 Å) pores gating the entry of charge-compensating anions. Due to the requirement for full desolvation and reorganization of electrolyte outside the MOF particle, the anion-coupled oxidation of internal Fe2+ sites involves a giant redox entropy change (i.e., 164 J K-1 mol-1). Taken together, this study establishes a microscopic picture of ion-intercalation redox chemistry in nanoconfined environments and demonstrates the synthetic possibility of tuning electrode potentials by over a volt, with profound implications for energy capture and storage technologies.

3.
J Colloid Interface Sci ; 599: 706-716, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33984763

RESUMO

HYPOTHESIS: Layer-by-layer deposition of polyelectrolytes is a useful technique for modifying surface functionalities. For drug delivery systems, alternating layers of biopolymers coat nanoemulsions, which house and protect the cargo until the time and destination of delivery. Here, we investigate molecular factors contributing to the stability and interfacial properties of nanoemulsions prepared by a co-adsorption of polymers poly(styrene sulfonate) and polyethylenimine (PEI), and surfactant dodecyltrimethylammonium bromide. We hypothesize the interplay between electrosteric and hydrophobic effects upon multi-polymer co-adsorption contributes to both macroscopic and molecular-level interfacial properties of nanoemulsions. EXPERIMENTS: To probe interfacial layering properties, we use vibrational sum frequency scattering spectroscopy with ζ-potential measurements to determine the adsorptive behavior and molecular conformational arrangement of the polymer layers. Complementing these interfacial studies are dynamic light scattering experiments measuring the nanoemulsion size distribution and polydispersity index over a 30-day period. FINDINGS: Our light scattering, ζ-potential, and spectroscopic results of the nanoemulsion surface show that the duration of droplet stability and the degree of molecular orientation of adsorbed polymers can be tuned by surfactant concentration, PEI concentration, and pH. These results illustrate how molecular surface properties of multi-polymer coated nanoemulsions contribute to synergistic effects and droplet stability, enabling advancements in applications surrounding biopharmaceuticals, cosmetics, and food sciences.

4.
J Phys Chem B ; 125(12): 3216-3229, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33739105

RESUMO

The development of vibrational sum-frequency scattering (S-VSF) spectroscopy has opened the door to directly probing nanoparticle surfaces with an interfacial and chemical specificity that was previously reserved for planar interfacial systems. Despite its potential, challenges remain in the application of S-VSF spectroscopy beyond simplified chemical systems. One such challenge includes infrared absorption by an absorptive continuous phase, which will alter the spectral lineshapes within S-VSF spectra. In this study, we investigate how solvent vibrational modes manifest in S-VSF spectra of surfactant stabilized nanoemulsions and demonstrate how corrections for infrared absorption can recover the spectral features of interfacial solvent molecules. We also investigate infrared absorption for systems with the absorptive phase dispersed in a nonabsorptive continuous phase to show that infrared absorption, while reduced, will still impact the S-VSF spectra. These studies are then used to provide practical recommendations for anyone wishing to use S-VSF to study nanoparticle surfaces where absorptive solvents are present.

5.
Opt Express ; 28(8): 11339-11355, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403647

RESUMO

The duration of transient absorption spectroscopy measurements typically limits the types of systems for which the excited state dynamics can be measured. We present a single-shot transient absorption (SSTA) instrument with a spatially encoded 60 ps time delay range and a 100 nm spectral range that is capable of acquiring a transient spectrum in 20 s. We describe methods to spatially overlap the flat-top pump and probe beams at the sample plane, calibrate the spatially encoded time delay, and correct for non-uniform excitation density. SSTA measurements of organic materials in solution and film demonstrate this technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...