Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(1): 336-348, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36153706

RESUMO

BACKGROUND: Bacillus species synthesize antifungal lipopeptides (LPs) making them a sustainable and eco-friendly management option to combat Fusarium wilt of chickpea. RESULTS: In this study, 18 endophytic Bacillus strains were assessed for their antifungal activity against Fusarium oxysporum f. sp. ciceris (FOC) associated with Fusarium wilt of chickpea. Among them, 13 strains produced significant inhibition zones in a direct antifungal assay while five strains failed to produce the inhibition of FOC. Bacillus thuringiensis CHGP12 exhibited the highest inhibition 3.45 cm of FOC. The LPs extracted from CHGP12 showed significant inhibition of the pathogen. Liquid chromatography-mass spectrometry (LC-MS) analysis confirmed that CHGP12 possessed the ability to produce fengycin, surfactin, iturin, bacillaene, bacillibactin, plantazolicin, and bacilysin. In an in vitro qualitative assay CHGP12 exhibited the ability to produce lipase, amylase, cellulase, protease, siderophores, and indole 3-acetic acid (IAA). IAA and gibberellic acid (GA) were quantified using ultra-performance liquid chromatography (UPLC) with 370 and 770 ng mL-1 concentrations of IAA and GA respectively. Furthermore, the disease severity showed a 40% decrease over control in CHGP12 treated plants compared to the control in a glasshouse experiment. Moreover, CHGP12 also exhibited a significant increase in total biomass of the plants namely, root and shoot growth parameters, stomatal conductance, and photosynthesis rate. CONCLUSION: In conclusion, our findings suggest that B. thuringiensis CHGP12 is a promising strain with high antagonistic and growth-promoting potential against Fusarium wilt of chickpea. © 2022 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Cicer , Fusarium , Bacillus thuringiensis/metabolismo , Cicer/crescimento & desenvolvimento , Cicer/microbiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
2.
Life (Basel) ; 12(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35207608

RESUMO

Euphorbia nivulia-Ham (EN) is a neglected medicinal plant traditionally used for a number of pathologies, but it has not been explored scientifically. In the current study, its various fractions were assessed for their phenolic and flavonoid content, radical scavenging, as well as its enzyme inhibitory potential. The hydro-alcoholic crude extract (ENCr) was subjected to a fractionation scheme to obtain different fractions, namely n-hexane (ENHF), chloroform (ENCF), n-butanol (ENBF), and aqueous fraction (ENAF). The obtained results revealed that the highest phenolic and flavonoid content, maximum radical scavenging potential (91 ± 0.55%), urease inhibition (54.36 ± 1.47%), and α-glucosidase inhibition (97.84 ± 1.87%) were exhibited by ENCr, while the ENBF fraction exhibited the highest acetylcholinestrase inhibition (57.32 ± 0.43%). Contrary to these, hydro-alcoholic crude as well as the other fractions showed no significant butyrylcholinestrases (BChE) and carbonic anhydrase inhibition activity. Conclusively, it was found that EN possesses a significant radical scavenging and enzyme inhibitory potential. Thus, the study may be regarded a step forward towards evidence-based phyto-medicine.

3.
PLoS One ; 16(4): e0250118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930032

RESUMO

Many phytochemicals can affect the growth and development of plants and insects which can be used as biological control agents. In this study, different concentrations of crude, hexane, chloroform, butanol, and aqueous extracts of Euphorbia nivulia Buch.-Ham., an endemic plant of the Cholistan desert in South Punjab of Pakistan, were analysed for their chemical constituents. Their various concentrations were also tested for their phytotoxic and insecticidal potential against duckweed, Lemna minor L., and the dusky cotton bug, Oxycarenus hyalinipennis Costa. various polyphenols, i.e., quercetin, gallic acid, caffeic acid, syringic acid, coumaric acid, ferulic acid, and cinnamic acid were detected in different concentrations with different solvents during the phytochemical screening of E. nivulia. In the phytotoxicity test, except for 100 µg/mL of the butanol extract gave 4.5% growth regulation, no phytotoxic lethality could be found at 10 and 100 µg/mL of all the extracts. The highest concentration, 1000 µg/mL, of the chloroform, crude, and butanol extracts showed 100, 63.1, and 27.1% of growth inhibition in duckweed, respectively. In the insecticidal bioassay, the highest O. hyalinipennis mortalities (87 and 75%) were recorded at 15% concentration of the chloroform and butanol extracts of E. nivulia. In contrast, the lower concentrations of the E. nivulia extracts caused the lower mortalities. Altogether, these findings revealed that E. nivulia chloroform extracts showed significant phytotoxicity while all the extracts showed insecticidal potential. This potential can be, further, refined to be developed for bio-control agents.


Assuntos
Euphorbia/química , Euphorbia/metabolismo , Extratos Vegetais/farmacologia , Alcaloides , Animais , Araceae/efeitos dos fármacos , Araceae/metabolismo , Artemia/efeitos dos fármacos , Euphorbia/fisiologia , Hemípteros/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Hexanos , Inseticidas/farmacologia , Paquistão , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo
4.
PLoS One ; 15(12): e0241130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259487

RESUMO

Wheat is one of the best-domesticated cereal crops and one of the vital sources of nutrition for humans. An investigation was undertaken to reveal the potential of novel bio-inoculants enriching micronutrients in shoot and grains of wheat crop to eliminate the hazards of malnutrition. Sole as well as consortia inoculation of bio-inoculants significantly enhanced mineral nutrients including zinc (Zn) and iron (Fe) concentrations in shoot and grains of wheat. Various treatments of bio-inoculants increase Zn and Fe content up to 1-15% and 3-13%, respectively. Sole inoculation of Bacillus aryabhattai (S10) impressively improves the nutritious of wheat. However, the maximum increase in minerals contents of wheat was recorded by consortia inoculation of Paenibacillus polymyxa ZM27, Bacillus subtilis ZM63 and Bacillus aryabhattai S10. This treatment also showed a maximum bacterial population (18 × 104 cfu mL-1) in the rhizosphere. The consortium application of these strains showed up to a 17% increase in yield. It is evident from the results that the consortium application was more effective than sole and co-inoculation. A healthy positive correlation was found between growth, yield, and the accessibility of micronutrients to wheat crops at the harvesting stage. The present investigations revealed the significance of novel bacterial strains in improving the nutritional status of wheat crops. These strains could be used as bio-inoculants for the biofortification of wheat to combat hidden hunger in developing countries.


Assuntos
Bacillus/metabolismo , Grão Comestível/crescimento & desenvolvimento , Paenibacillus/metabolismo , Triticum/crescimento & desenvolvimento , Biofortificação , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Humanos , Ferro/metabolismo , Micronutrientes/metabolismo , Rizosfera , Microbiologia do Solo , Triticum/microbiologia , Zinco/metabolismo
5.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784649

RESUMO

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist's mind, as it allows genome editing in multiple biological systems.


Assuntos
Produtos Agrícolas/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Genoma de Planta , Melhoramento Vegetal
6.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660143

RESUMO

Grey mold is one of the most serious and catastrophic diseases, causing significant yield losses in fruits and vegetables worldwide. Iprodione is a broad spectrum agrochemical used as a foliar application as well as a seed protectant against many fungal and nematode diseases of fruits and vegetables from the last thirty years. The extensive use of agrochemicals produces resistance in plant pathogens and is the most devastating issue in food and agriculture. However, the molecular mechanism (whole transcriptomic analysis) of a resistant mutant of B. cinerea against iprodione is still unknown. In the present study, mycelial growth, sporulation, virulence, osmotic potential, cell membrane permeability, enzymatic activity, and whole transcriptomic analysis of UV (ultraviolet) mutagenic mutant and its wild type were performed to compare the fitness. The EC50 (half maximal effective concentration that inhibits the growth of mycelium) value of iprodione for 112 isolates of B. cinerea ranged from 0.07 to 0.87 µg/mL with an average (0.47 µg/mL) collected from tomato field of Guangxi Province China. Results also revealed that, among iprodione sensitive strains, only B67 strain induced two mutants, M0 and M1 after UV application. The EC50 of these induced mutants were 1025.74 µg/mL and 674.48 µg/mL, respectively, as compared to its wild type 1.12 µg/mL. Furthermore, mutant M0 showed higher mycelial growth sclerotia formation, virulence, and enzymatic activity than wild type W0 and M1 on potato dextrose agar (PDA) medium. The bctubA gene in the mutant M0 replaced TTC and GAT codon at position 593 and 599 by TTA and GAA, resulting in replacement of phenyl alanine into leucine (transversion C/A) and aspartic acid into glutamic acid (transversion T/C) respectively. In contrast, in bctubB gene, GAT codon at position 646 is replaced by AAT and aspartic acid converted into asparagine (transition G/A). RNA sequencing of the mutant and its wild type was performed without (M0, W0) and with iprodione treatment (M-ipro, W-ipro). The differential gene expression (DEG) identified 720 unigenes in mutant M-ipro than W-ipro after iprodione treatment (FDR ≤ 0.05 and log2FC ≥ 1). Seven DEGs were randomly selected for quantitative real time polymerase chain reaction to validate the RNA sequencing genes expression (log fold 2 value). The gene ontology (GO) enrichment and Kyoto encyclopedia genes and genomes (KEGG) pathway functional analyses indicated that DEG's mainly associated with lysophopholipase, carbohydrate metabolism, amino acid metabolism, catalytic activity, multifunctional genes (MFO), glutathione-S transferase (GST), drug sensitivity, and cytochrome P450 related genes are upregulated in mutant type (M0, M-ipro) as compared to its wild type (W0, W-ipro), may be related to induce resistant in mutants of B. cinerea against iprodione.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Botrytis/efeitos dos fármacos , Botrytis/genética , Farmacorresistência Fúngica/genética , Hidantoínas/farmacologia , Redes e Vias Metabólicas/genética , Solanum lycopersicum/microbiologia , Transcriptoma/genética , Aminoimidazol Carboxamida/farmacologia , Catálise , Farmacorresistência Fúngica/efeitos dos fármacos , Frutas/microbiologia , Fungicidas Industriais/farmacologia , Micélio/efeitos dos fármacos , Micélio/genética , Doenças das Plantas/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...