Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1110360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819031

RESUMO

Antimicrobial resistance is a natural and inevitable phenomenon that constitutes a severe threat to global public health and economy. Innovative products, active against new targets and with no cross- or co-resistance with existing antibiotic classes, novel mechanisms of action, or multiple therapeutic targets are urgently required. For these reasons, antimicrobial peptides such as bacteriocins constitute a promising class of new antimicrobial drugs under investigation for clinical development. Here, we review the potential therapeutic use of AS-48, a head-to-tail cyclized cationic bacteriocin produced by Enterococcus faecalis. In the last few years, its potential against a wide range of human pathogens, including relevant bacterial pathogens and trypanosomatids, has been reported using in vitro tests and the mechanism of action has been investigated. AS-48 can create pores in the membrane of bacterial cells without the mediation of any specific receptor. However, this mechanism of action is different when susceptible parasites are studied and involves intracellular targets. Due to these novel mechanisms of action, AS-48 remains active against the antibiotic resistant strains tested. Remarkably, the effect of AS-48 against eukaryotic cell lines and in several animal models show little effect at the doses needed to inhibit susceptible species. The characteristics of this molecule such as low toxicity, microbicide activity, blood stability and activity, high stability at a wide range of temperatures or pH, resistance to proteases, and the receptor-independent effect make AS-48 unique to fight a broad range of microbial infections, including bacteria and some important parasites.

2.
Pharmaceutics ; 14(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559238

RESUMO

Among the strategies employed to overcome the development of multidrug-resistant bacteria, directed chemotherapy combined with local therapies (e.g., magnetic hyperthermia) has gained great interest. A nano-assembly coupling the antimicrobial peptide AS-48 to biomimetic magnetic nanoparticles (AS-48-BMNPs) was demonstrated to have potent bactericidal effects on both Gram-positive and Gram-negative bacteria when the antimicrobial activity of the peptide was combined with magnetic hyperthermia. Nevertheless, intracellular pathogens remain challenging due to the difficulty of the drug reaching the bacterium. Thus, improving the cellular uptake of the nanocarrier is crucial for the success of the treatment. In the present study, we demonstrate the embedding cellular uptake of the original nano-assembly into THP-1, reducing the toxicity of AS-48 toward healthy THP-1 cells. We optimized the design of PLGA[AS-48-BMNPs] in terms of size, colloidal stability, and hyperthermia activity (either magnetic or photothermal). The stability of the nano-formulation at physiological pH values was evaluated by studying the AS-48 release at this pH value. The influence of pH and hyperthermia on the AS-48 release from the nano-formulation was also studied. These results show a slower AS-48 release from PLGA[AS-48-BMNPs] compared to previous nano-formulations, which could make this new nano-formulation suitable for longer extended treatments of intracellular pathogens. PLGA[AS-48-BMNPs] are internalized in THP-1 cells where AS-48 is liberated slowly, which may be useful to treat diseases and prevent infection caused by intracellular pathogens. The treatment will be more efficient combined with hyperthermia or photothermia.

3.
Animals (Basel) ; 12(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35883368

RESUMO

This study analyzes the potential use of an Allium-derived compound, propyl propane thiosulfonate (PTSO), as a functional feed additive in aquaculture. Gilthead seabream (Sparus aurata) juveniles had their diet supplemented with this Allium-derived compound (150 mg/kg of PTSO) and were compared with control fish. The effects of this organosulfur compound were tested by measuring the body weight and analyzing the gut microbiota after 12 weeks. The relative abundance of potentially pathogenic Vibrio and Pseudomonas in the foregut and hindgut of supplemented fish significantly decreased, while potentially beneficial Lactobacillus increased compared to in the control fish. Shannon's alpha diversity index significantly increased in both gut regions of fish fed with a PTSO-supplemented diet. Regarding beta diversity, significant differences between treatments only appeared in the hindgut when minority ASVs were taken into account. No differences occurred in body weight during the experiment. These results indicate that supplementing the diet with Allium-derived PTSO produced beneficial changes in the intestinal microbiota while maintaining the productive parameters of gilthead seabream juveniles.

4.
J Chem Inf Model ; 61(12): 6066-6078, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34874722

RESUMO

The AS-48 bacteriocin is a potent antimicrobial polypeptide with enhanced stability due to its circular sequence of peptidic bonds. The mechanism of biological action is still not well understood in spite of both the elucidation of the molecular structure some years ago and several experiments performed that yielded valuable information about the AS-48 bacterial membrane poration activity. In this work, we present a computational study at an atomistic scale to analyze the membrane disruption mechanism. The process is based on the two-stage model: (1) peptide binding to the bilayer surface and (2) membrane poration due to the surface tension exerted by the peptide. Indeed, the induced membrane tension mechanism is able to explain stable formation of pores leading to membrane disruption. The atomistic detail obtained from the simulations allows one to envisage the contribution of the different amino acids during the poration process. Clustering of cationic residues and hydrophobic interactions between peptide and lipids seem to be essential ingredients in the process. GLU amino acids have shown to enhance the membrane disrupting ability of the bacteriocin. TRP24-TRP24 interactions make also an important contribution in the initial stages of the poration mechanism. The detailed atomistic information obtained from the simulations can serve to better understand bacteriocin structural characteristics to design more potent antimicrobial therapies.


Assuntos
Anti-Infecciosos , Bacteriocinas , Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Bacteriocinas/farmacologia , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
5.
Org Biomol Chem ; 19(40): 8821-8829, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34585207

RESUMO

Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.


Assuntos
Ácido Glutâmico
6.
Antibiotics (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34438974

RESUMO

The treatment and hospital-spread-control of methicillin-resistant Staphylococcus aureus (MRSA) is an important challenge since these bacteria are involved in a considerable number of nosocomial infections that are difficult to treat and produce prolonged hospitalization, thus also increasing the risk of death. In fact, MRSA strains are frequently resistant to all ß-lactam antibiotics, and co-resistances with other drugs such as macrolides, aminoglycosides, and lincosamides are usually reported, limiting the therapeutical options. To this must be added that the ability of these bacteria to form biofilms on hospital surfaces and devices confer high antibiotic resistance and favors horizontal gene transfer of genetic-resistant mobile elements, the spreading of infections, and relapses. Here, we genotypically and phenotypically characterized 100 clinically isolated S. aureus for their resistance to 18 antibiotics (33% of them were OXA resistant MRSA) and ability to form biofilms. From them, we selected 48 strains on the basis on genotype group, antimicrobial-resistance profile, and existing OXA resistance to be assayed against bacteriocin AS-48. The results showed that AS-48 was active against all strains, regardless of their clinical source, genotype, antimicrobial resistance profile, or biofilm formation capacity, and this activity was enhanced in the presence of the antimicrobial peptide lysozyme. Finally, we explored the effect of AS-48 on formed S. aureus biofilms, observing a reduction in S. aureus S-33 viability. Changes in the matrix structure of the biofilms as well as in the cell division process were observed with scanning electron microscopy in both S-33 and S-48 S. aureus strains.

7.
Microorganisms ; 9(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208875

RESUMO

In their struggle for life, bacteria frequently produce antagonistic substances against competitors. Antimicrobial peptides produced by bacteria (known as bacteriocins) are active against other bacteria, but harmless to their producer due to an associated immunity gene that prevents self-inhibition. However, knowledge of cross-resistance between different types of bacteriocin producer remains very limited. The immune function of certain bacteriocins produced by the Enterococcus genus (known as enterocins) is mediated by an ABC transporter. This is the case for enterocin AS-48, a gene cluster that includes two ABC transporter-like systems (Transporter-1 and 2) and an immunity protein. Transporter-2 in this cluster shows a high similarity to the ABC transporter-like system in MR10A and MR10B enterocin gene clusters. The aim of our study was to determine the possible role of this ABC transporter in cross-resistance between these two different types of enterocin. To this end, we designed different mutants (Tn5 derivative and deletion mutants) of the as-48 gene cluster in Enterococcus faecalis and cloned them into the pAM401 shuttle vector. Antimicrobial activity assays showed that enterocin AS-48 Transporter-2 is responsible for cross-resistance between AS-48 and MR10A/B enterocin producers and allowed identification of the MR10A/B immunity gene system. These findings open the way to the investigation of resistance beyond homologous bacteriocins.

8.
Antibiotics (Basel) ; 10(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800152

RESUMO

Antimicrobial resistance (AMR) has risen as a global threat for human health. One of the leading factors for this emergence has been the massive use of antibiotics growth-promoter (AGPs) in livestock, enhancing the spread of AMR among human pathogenic bacteria. Thus, several alternatives such as probiotics, prebiotics, or phytobiotics have been proposed for using in animal feeding to maintain or improve productive levels while diminishing the negative effects of AGPs. Reducing the use of antibiotics is a key aspect in the pig rearing for production reasons, as well as for the production of high-quality pork, acceptable to consumers. Here we analyze the potential use of Allium extract as an alternative. In this study, weaned piglets were fed with Allium extract supplementation and compared with control and antibiotic (colistin and zinc oxide) treated piglets. The effects of Allium extract were tested by analyzing the gut microbiome and measuring different productive parameters. Alpha diversity indices decreased significantly in Allium extract group in caecum and colon. Regarding beta diversity, significant differences between treatments appeared only in caecum and colon. Allium extract and antibiotic piglets showed better values of body weight (BW), average daily weight gain (ADG), and feed conversion ratio (FCR) than control group. These results indicate that productive parameters can be implemented by modifying the gut microbiota through phytobiotics such as Allium extract, which will drive to drop the use of antibiotics in piglet diet.

9.
Animals (Basel) ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572138

RESUMO

Phytobiotics (bioactive compounds extracted from plants) are one of the explored alternatives to antibiotics in poultry and livestock due to their antimicrobial activity and its positive effects on gut microbiota and productive properties. In this study, we supplemented a product based on garlic and onion compounds in the diet to laying hens at the beginning of their productive life (from 16 to 20 weeks post-hatching). The experimental group showed a significant increase in the number of eggs laid and in their size, produced in one month compared to the control. This increase in production was accompanied by microbiota changes in the ileum and cecum by means of high throughput sequencing analyses. These bacterial shifts in the ileum were mainly the result of compositional changes in the rare biosphere (unweighted UniFrac), while in the cecum, treatment affected both majority and minority bacterial groups (weighted and unweighted UniFrac). These changes in the microbiota suggest an improvement in food digestibility. The relative abundance of Lactococcus in the ileum and Lactobacillus in the cecum increased significantly in the experimental group. The relative abundance of these bacterial genera are known to have positive effects on the hosts. These results are very promising for the use of these compounds in poultry for short periods.

10.
Antibiotics (Basel) ; 9(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887311

RESUMO

The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that can cause diverse health care-associated infections. Their genome plasticity enables easy acquisition of virulence factors as well as antibiotic resistances. Urinary tract infections (UTIs) and catheter-associated UTIs are common diseases caused by enterococci. In this study, Enterococcus strains isolated from UTIs were characterized, showing that the majority were E. faecalis and contained several virulence factors associated to a better colonization of the urinary tract. Their susceptibility against the bacteriocin AS-48 and several antibiotics was tested. AS-48 is a potent circular bacteriocin that causes bacterial death by pore formation in the cell membrane. The interest of this bacteriocin is based on the potent inhibitory activity, the high stability against environmental conditions, and the low toxicity. AS-48 was active at concentrations below 10 mg/L even against antibiotic-resistant strains, whereas these strains showed resistance to, at least, seven of the 20 antibiotics tested. Moreover, the effect of AS-48 combined with antibiotics commonly used to treat UTIs was largely synergistic (with up to 100-fold MIC reduction) and only occasionally additive. These data suggest AS-48 as a potential novel drug to deal with or prevent enterococcal infections.

11.
J Antimicrob Chemother ; 75(6): 1537-1545, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129856

RESUMO

OBJECTIVES: We report the in vivo trypanocidal activity of the bacteriocin AS-48 (lacking toxicity), which is produced by Enterococcus faecalis, against the flagellated protozoan Trypanosoma cruzi, the aetiological agent of Chagas' disease. METHODS: We determined the in vivo activity of AS-48 against the T. cruzi Arequipa strain in BALB/c mice (in both acute and chronic phases of Chagas' disease). We evaluated the parasitaemia, the reactivation of parasitaemia after immunosuppression and the nested parasites in the chronic phase by PCR in target tissues. RESULTS: AS-48 reduced the parasitaemia profile in acute infection and showed a noteworthy reduction in the parasitic load in chronic infection after immunosuppression according to the results obtained by PCR (double-checking to demonstrate cure). CONCLUSIONS: AS-48 is a promising alternative that provides a step forward in the development of a new therapy against Chagas' disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Parasitemia/tratamento farmacológico
12.
Food Chem ; 310: 125976, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31835230

RESUMO

Olive leaves extract (OLE) was spray-dried with maltodextrin (MD) or inulin (IN) to study the evolution of oleuropein (OE) during in vitro gastrointestinal digestion, its bioaccessibility and potential bioavailability. In the case of OLE-MD, OE was partially degraded in gastric and intestinal conditions; whereas in OLE-IN, OE was released under gastric conditions and partially degraded under intestinal conditions. In both cases, the encapsulation of OLE led to higher OE contents at the end of digestion, compared with non-encapsulated OLE, suggesting a protective role of the polysaccharides by the formation of non-covalent polysaccharides-OE complexes. OE bioaccessibility was ten times higher (p ≤ 0.05) in OLE-MD and OLE-IN than in non-encapsulated OLE. However, OE potential bioavailability, evaluated by tangential filtration, was not detected. Encapsulation technology and the encapsulant agent used may determine the release of the encapsulated compounds at a specific-site and their effect on health.


Assuntos
Produtos Biológicos/química , Inulina/química , Iridoides/farmacocinética , Polissacarídeos/química , Disponibilidade Biológica , Digestão , Inulina/metabolismo , Inulina/farmacocinética , Glucosídeos Iridoides , Iridoides/química , Folhas de Planta/química , Polissacarídeos/farmacocinética
13.
Food Chem Toxicol ; 132: 110667, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31288051

RESUMO

Few studies have examined the use of animal models to evaluate the in-vivo toxicity of antimicrobial peptides, but such research is essential to their safe use in foods. This study was performed to evaluate any adverse effects of enterocin AS-48, a circular bacteriocin produced by Enterococcus strains, when administered to BALB/c mice at concentrations of 50, 100, and 200 mg/kg in the diet for 90 days. Animals dosed with nisin at a dietary concentration of 200 mg/kg served as a reference treated group. There were no deaths in any of the animal groups, and the AS-48 treatment produced no abnormalities or clinical signs on body weights, food consumption, urinalysis, haematology, or blood biochemistry. Furthermore, there were no significant differences in the weights of liver, spleen, heart, kidneys, and intestines between control mice and those treated with AS-48 or nisin. The histopathological study showed moderate vacuolar degeneration in hepatocytes of some animals fed 100 or 200 mg/kg AS-48 (3/10 and 2/10 respectively). However, this anomaly was lower than in the group treated with nisin (5/10). Conclusively, no toxicologically significant changes were associated in BALB/c mice fed with 50, 100, and 200 mg/kg enterocin AS-48 for 90 days.


Assuntos
Proteínas de Bactérias/toxicidade , Enterococcus faecalis/metabolismo , Peptídeos/toxicidade , Animais , Proteínas de Bactérias/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão/efeitos dos fármacos , Peptídeos/administração & dosagem , Testes de Toxicidade Subcrônica
14.
J Adv Res ; 20: 129-139, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31360546

RESUMO

The in vitro antimicrobial potency of the bacteriocin AS-48 is well documented, but its clinical application requires investigation, as its toxicity could be different in in vitro (haemolytic and antibacterial activity in blood and cytotoxicity towards normal human cell lines) and in vivo (e.g. mice and zebrafish embryos) models. Overall, the results obtained are promising. They reveal the negligible propensity of AS-48 to cause cell death or impede cell growth at therapeutic concentrations (up to 27 µM) and support the suitability of this peptide as a potential therapeutic agent against several microbial infections, due to its selectivity and potency at low concentrations (in the range of 0.3-8.9 µM). In addition, AS-48 exhibits low haemolytic activity in whole blood and does not induce nitrite accumulation in non-stimulated RAW macrophages, indicating a lack of pro-inflammatory effects. The unexpected heightened sensitivity of zebrafish embryos to AS-48 could be due to the low differentiation state of these cells. The low cytotoxicity of AS-48, the absence of lymphocyte proliferation in vivo after skin sensitization in mice, and the lack of toxicity in a murine model support the consideration of the broad spectrum antimicrobial peptide AS-48 as a promising therapeutic agent for the control of a vast array of microbial infections, in particular, those involved in skin and soft tissue diseases.

15.
Front Microbiol ; 10: 1042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178831

RESUMO

Antimicrobial resistance (AMR) is one of the most serious threats for human health in the near future. Livestock has played an important role in the appearance of antibiotic-resistant bacteria, intestinal dysbiosis in farming animals, or the spread of AMR among pathogenic bacteria of human concern. The development of alternatives like probiotics is focused on maintaining or improving production levels while diminishing these negative effects of antibiotics. To this end, we supplied the potential probiotic Enterococcus faecalis UGRA10 in the diet of laying hens at a final concentration of 108 Colony Forming Units per gram (CFU/g) of fodder. Its effects have been analyzed by: (i) investigating the response of the ileum and caecum microbiome; and (ii) analyzing the outcome on eggs production. During the second half of the experimental period (40 to 76 days), hens fed E. faecalis UGRA10 maintained egg production, while control animals dropped egg production. Supplementation diet with E. faecalis UGRA10 significantly increased ileum and caecum bacterial diversity (higher bacterial operational taxonomic unit richness and Faith's diversity index) of laying hens, with animals fed the same diet showing a higher similarity in microbial composition. These results point out to the beneficial effects of E. faecalis UGRA10 in egg production. Future experiments are necessary to unveil the underlying mechanisms that mediate the positive response of animals to this treatment.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30953804

RESUMO

Chagas disease caused by the protozoan parasite Trypanosoma cruzi represents a significant public health problem in Latin America, affecting around 8 million cases worldwide. Nowadays is urgent the identification of new antichagasic agents as the only therapeutic options available, Nifurtimox and Benznidazole, are in use for >40 years, and present high toxicity, limited efficacy and frequent treatment failures in the chronic phase of the disease. Recently, it has been described the antiparasitic effect of AS-48, a bacteriocin produced by Enterococcus faecalis, against Trypanosoma brucei and Leishmania spp. In this work, we have demonstrated the in vitro potential of the AS-48 bacteriocin against T. cruzi. Interesting, AS-48 was more effective against the three morphological forms of different T. cruzi strains, and displayed lower cytotoxicity than the reference drug Benznidazole. In addition, AS-48 combines the criteria established as a potential antichagasic agent, resulting in a promising therapeutic alternative. According to the action mechanism, AS-48 trypanocidal activity could be explained in a mitochondrion-dependent manner through a reactive oxygen species production and mitochondrial depolarization, causing a fast and severe bioenergetic collapse.


Assuntos
Bacteriocinas/farmacologia , Doença de Chagas/parasitologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Bacteriocinas/metabolismo , Doença de Chagas/tratamento farmacológico , Enterococcus faecalis/química , Enterococcus faecalis/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nitroimidazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
17.
Food Chem ; 279: 40-48, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611506

RESUMO

An olive leaf extract (OLE) was microencapsulated with sodium alginate (SA) by spray-drying to study the evolution of oleuropein (ORP) during in vitro gastrointestinal digestion, and its bioaccessibility and potential bioavailability from OLE and OLE-SA microparticles. Secoiridoids, flavonoids, simple phenols, oleosides and elenolic acid were identified in OLE. OLE/SA ratio 1:1.6 and inlet air temperature 135 °C were the optimal conditions for OLE-SA microparticles. ORP (70%) from OLE was degraded during gastric digestion, giving hydroxytyrosol and ORP-aglycone, whereas only the superficial ORP was released from microparticles. The remaining ORP from OLE was degraded under intestinal conditions, leading to oleosides; whereas alginate was swollen and disintegrated, releasing the ORP (90% of encapsulated ORP). ORP from both OLE and microparticles was degraded to hydroxytyrosol under colonic conditions. Encapsulation of OLE allowed the protection of ORP under gastric conditions and its controlled release at intestinal conditions, and higher bioaccessibility (58%) and potential bioavailability (20%).


Assuntos
Dessecação/métodos , Olea/química , Fenóis/química , Extratos Vegetais/química , Alginatos/química , Cromatografia Líquida de Alta Pressão , Glucosídeos Iridoides , Iridoides/química , Olea/metabolismo , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Temperatura
18.
Sci Rep ; 8(1): 11766, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082920

RESUMO

We report the high susceptibility of several clinical isolates of Propionibacterium acnes from different sources (skin, bone, wound exudates, abscess or blood contamination) to the head-to-tail cyclized bacteriocin AS-48. This peptide is a feasible candidate for further pharmacological development against this bacterium, due to its physicochemical and biological characteristics, even when it is growing in a biofilm. Thus, the treatment of pre-formed biofilms with AS-48 resulted in a dose- and time-dependent disruption of the biofilm architecture beside the decrease of bacterial viability. Furthermore, we demonstrated the potential of lysozyme to bolster the inhibitory activity of AS-48 against P. acnes, rendering high reductions in the MIC values, even in matrix-growing cultures, according to the results obtained using a range of microscopy and bioassay techniques. The improvement of the activity of AS-48 through its co-formulation with lysozyme may be considered an alternative in the control of P. acnes, especially after proving the absence of cytotoxicity demonstrated by these natural compounds on relevant human skin cell lines. In summary, this study supports that compositions comprising the bacteriocin AS-48 plus lysozyme must be considered as promising candidates for topical applications with medical and pharmaceutical purposes against dermatological diseases such as acne vulgaris.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Muramidase/metabolismo , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/metabolismo , Biofilmes/efeitos dos fármacos , Citometria de Fluxo , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Propionibacterium acnes/ultraestrutura
19.
Artigo em Inglês | MEDLINE | ID: mdl-29987141

RESUMO

The increasing incidence of multidrug-resistant Mycobacterium tuberculosis strains and the very few drugs available for treatment are promoting the discovery and development of new molecules that could help in the control of this disease. Bacteriocin AS-48 is an antibacterial peptide produced by Enterococcus faecalis and is active against several Gram-positive bacteria. We have found that AS-48 was active against Mycobacterium tuberculosis, including H37Rv and other reference and clinical strains, and also against some nontuberculous clinical mycobacterial species. The combination of AS-48 with either lysozyme or ethambutol (commonly used in the treatment of drug-susceptible tuberculosis) increased the antituberculosis action of AS-48, showing a synergic interaction. Under these conditions, AS-48 exhibits a MIC close to some MICs of the first-line antituberculosis agents. The inhibitory activity of AS-48 and its synergistic combination with ethambutol were also observed on M. tuberculosis-infected macrophages. Finally, AS-48 did not show any cytotoxicity against THP-1, MHS, and J774.2 macrophage cell lines at concentrations close to its MIC. In summary, bacteriocin AS-48 has interesting antimycobacterial activity in vitro and low cytotoxicity, so further studies in vivo will contribute to its development as a potential additional drug for antituberculosis therapy.


Assuntos
Antituberculosos/farmacologia , Bacteriocinas/farmacologia , Etambutol/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Sinergismo Farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana/métodos , Muramidase/metabolismo , Células RAW 264.7 , Tuberculose/metabolismo
20.
Front Microbiol ; 9: 1143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946300

RESUMO

Staphylococci are a group of microorganisms that can be often found in processed food and they might pose a risk for human health. In this study we have determined the content of staphylococci in 7 different fresh goat-milk cheeses. These bacteria were present in all of them, ranging from 103 to 106 CFU/g based on growth on selective media. Thus, a set of 97 colonies was randomly picked for phenotypic and genotypic identification. They could be clustered by RAPD-PCR in 10 genotypes, which were assigned by 16S rDNA sequencing to four Staphylococcus species: Staphylococcus aureus, Staphylococcus chromogenes, S. simulans, and S. xylosus. Representative strains of these species (n = 25) were tested for antibiotic sensitivity, and 11 of them were resistant to at least one of the antibiotics tested, including erythromycin, amoxicillin-clavulanic acid and oxacillin. We also tested two bacteriocins produced by lactic acid bacteria (LAB), namely the circular bacteriocin AS-48 and the lantibiotic nisin. These peptides have different mechanism of action at the membrane level. Nevertheless, both were able to inhibit staphylococci growth at low concentrations ranging between 0.16-0.73 µM for AS-48 and 0.02-0.23 µM for nisin, including the strains that displayed antibiotic resistance. The combined effect of these bacteriocins were tested and the fractional inhibitory concentration index (FICI) was calculated. Remarkably, upon combination, they were active at the low micromolar range with a significant reduction of the minimal inhibitory concentration. Our data confirms synergistic effect, either total or partial, between AS-48 and nisin for the control of staphylococci and including antibiotic resistant strains. Collectively, these results indicate that the combined use of AS-48 and nisin could help controlling (pathogenic) staphylococci in food processing and preventing antibiotic-resistant strains reaching the consumer in the final products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...