Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(2): 373-386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855309

RESUMO

Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.


Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Complexo de Golgi/patologia , Proteínas Qa-SNARE/metabolismo
2.
Environ Sci Pollut Res Int ; 26(22): 22372-22388, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154640

RESUMO

The aim of this work is to synthesize a magnetic magnetite/multi-walled carbon nanotube (Fe3O4/MWCNT) catalyst by a method combining co-precipitation and hydrothermal treatments for the efficient removal of diclofenac (DCF) by catalytic wet peroxide oxidation (CWPO). The support (MWCNTs) shows a moderate-large surface area and good adsorption capacity, leading to the improvement of the magnetite (Fe3O4) dispersion on its surface. The response surface methodology (RSM) was applied in order to find out the effect of the reaction parameters on DCF removal, allowing to establish the optimum operating conditions (T = 60 °C, [H2O2]0 = 2.7 mM, [catalyst] = 1.0 g L-1). The optimum CWPO experiment showed an outstanding catalytic activity at non-modified pH solution (6.7), obtaining a 95% of DCF removal after 3 h reaction time; this high efficiency can be attributed to the synergistic effect of the iron-based catalyst with the high quantity of •OH radicals generated on the surface of the catalyst. In addition, the Fe3O4/MWCNT material exhibited good reusability along three consecutive reaction cycles, finding a pollutant removal close to 95% in each cycle of 3 h reaction time. Additionally, a degradation mechanism pathway was proposed for the removal of DCF by CWPO. The versatility of the material was finally demonstrated in the treatment of different environmentally relevant aqueous matrices (a wastewater treatment plant effluent, surface water, and hospital wastewater), obtaining an effective reduction in the ecotoxicity values.


Assuntos
Diclofenaco/química , Peróxido de Hidrogênio/química , Ferro/química , Adsorção , Catálise , Óxido Ferroso-Férrico , Nanotubos de Carbono , Oxirredução , Águas Residuárias , Água
3.
PLoS One ; 11(11): e0166717, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861632

RESUMO

Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.


Assuntos
Morte Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , Hipóxia/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Animais , Antioxidantes/metabolismo , Caspase 3/metabolismo , Regulação da Expressão Gênica , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Ácido Pirúvico/metabolismo , Superóxidos/metabolismo , Suínos , Técnicas de Cultura de Tecidos
4.
Nutrients ; 6(11): 4984-5017, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25389900

RESUMO

Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.


Assuntos
Matriz Extracelular/patologia , Deficiência de Vitamina A/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Vitamina A/administração & dosagem
5.
Alcohol Alcohol ; 48(1): 15-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23118092

RESUMO

AIMS: Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. METHODS: Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The levels of phospholipases C and D, and phosphatidylethanol formation were also assessed. The consequence of the possible alterations in the levels of PtdIns on the Golgi complex (GC) was also analysed. RESULTS: We show that phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate levels, both involved in the control of intracellular trafficking and cytoskeleton organization, decrease in ethanol-exposed hippocampal neurons. In contrast, several kinases that participate in the metabolism of these phospholipids, and the level and/or activity of phospholipases C and D, increase in cells after ethanol exposure. Ethanol also promotes phosphatidylethanol formation in neurons, which can result in the suppression of phosphatidic acid synthesis and, therefore, in PPIn biosynthesis. This treatment also lowers the phosphatidylinositol 4-phosphate levels, the main PPIn in the GC, with alterations in their morphology and in the levels of some of the proteins involved in structure maintenance. CONCLUSIONS: The deregulation of the metabolism of PtdIns may underlie the ethanol-induced alterations on different neuronal processes, including intracellular trafficking and cytoskeletal integrity.


Assuntos
Etanol/toxicidade , Complexo de Golgi/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Células Cultivadas , Etanol/administração & dosagem , Feminino , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Histochem Cell Biol ; 138(3): 489-501, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22614950

RESUMO

In the present study, we analyze the effects of ethanol on the Golgi structure and membrane transport in differentiated PC12 cells, which are used as a model of neurons. Chronic exposure to moderate doses of ethanol induces Golgi fragmentation, a common characteristic of many neurodegenerative diseases. Alcohol impaired the lateral linking of stacks without causing microtubule damage. Extensive immunocytochemical and western blot analyses of representative Golgi proteins showed that few, but important, proteins are significantly affected. Thus, alcohol exposure induced a significant ER-to-Golgi transport delay, the retention of the GTPase Rab1 in the Golgi membranes and the accumulation of tethering factor p115 in the cytosol. These modifications would explain the observed fragmentation. The amount of p115 and the stacking protein GRASP65 increased in alcohol-treated cells, which might be a mechanism to reverse Golgi damage. Importantly, the overexpression of GTP-tagged Rab1 but not of a dominant-negative Rab1 mutant, restored the Golgi morphology, suggesting that this protein is the main target of alcohol. Taken together, our results support the view that alcohol and neurodegenerative diseases such as Parkinson have similar effects on intracellular trafficking and provide new clues on the neuropathology of alcoholism.


Assuntos
Diferenciação Celular , Retículo Endoplasmático/metabolismo , Etanol/farmacologia , Complexo de Golgi/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Animais , Proteínas da Matriz do Complexo de Golgi , Proteínas de Membrana/metabolismo , Células PC12 , Transporte Proteico , Ratos , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo
7.
Alcohol Alcohol ; 46(1): 17-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21123366

RESUMO

AIMS: Zinc is an ion that participates in basic cellular and tissular functions. Zinc deficiency is present in many physiological and health problems affecting most body organs, including the brain. Among the circumstances involved in zinc deficiency, ethanol consumption is probably one of the most frequent. A dietary zinc supplement has been proposed as possibly being an efficient method to palliate zinc deficiency. Astrocytes form part of the hematoencephalic barrier, and they are apparently implicated in the homeostasis of the neuronal medium. In this work, we analyze the effect of ethanol on extracellular zinc management by rat astrocytes in culture. METHODS: Intracellular levels of 'free zinc ions', in controls and 30 mM ethanol-treated astrocytes, were visualized by using the zinc fluorochrome TSQ. Cytoplasmic fluorescence and zincosome formation were measured after adding extracellular 50 µM ZnSO(4) to cell monolayers. Zincosomes were also observed at the electron microscopy level. RESULTS: Exposure to ethanol for 7 days lowered the basal zinc levels of astrocytes by ∼30%. This difference was consistently maintained after the zinc pulse. Zinc ions were confined to bright fluorescent particles, the 'zincosomes', which appeared to be formed by the endocytic pathway. Zincosomes were less abundant in alcohol-treated cells, indicating a deficit in endocytoses as the origin of low zinc intake in astrocytes after ethanol treatment. CONCLUSIONS: Ethanol reduces both intracellular ionic zinc levels and extracellular zinc uptake, resulting in poorer zincosome formation. Given the endocytic nature of zincosomes, the effect of ethanol on membrane trafficking is apparently the origin of this deficit.


Assuntos
Astrócitos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Etanol/farmacologia , Zinco/deficiência , Zinco/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/ultraestrutura , Endocitose/efeitos dos fármacos , Homeostase , Ratos , Zinco/química , Zinco/farmacologia
8.
J Neurochem ; 106(4): 1914-28, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18547370

RESUMO

Nucleocytoplasmic transport is a crucial process for cell function. We assessed the general effect of chronic alcohol exposure on this transport in growing astrocytes for the first time. Import and export of proteins to the nucleus were examined by pulse-chase experiments using (3)H-methionine, and we showed that ethanol induces a delay in both processes. Furthermore, we took an approach to evaluate the mechanisms involved in this effect. Whereas alcohol did not affect the amount and the distribution of several representative proteins that participate in nuclear import, such as RanBP1, RanGAP1 and the importins alpha2 and beta3, it decreased the amount of Exp1/CRM1, which is a general export receptor involved in the nuclear export. In addition, the density and distribution of nuclear pore complexes, which contribute to nucleocytoplasmic transport, were also affected by ethanol. These effects can be related with changes found in the content of several proteins associated with the nuclear envelope and the nuclear pore complex structure such as lamins A/C, and nucleoporins p62 and RanBP2, respectively. These results suggest that ethanol could interfere with some of the important processes regulated by nucleocytoplasmic transport in astrocytes and support the idea that one of the main ethanol targets is intracellular transport.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Etanol/toxicidade , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Astrócitos/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Núcleo Celular/ultraestrutura , Células Cultivadas , Ratos
9.
J Microw Power Electromagn Energy ; 40(4): 198-210, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17847674

RESUMO

In this work a new microwave-heating procedure is presented as a viable alternative for both the conventional and ultraviolet (UV) curing systems used in the natural stone industry. Both thermal simulations and experimental tests demonstrate that microwave energy highly reduces curing and storing times while maintaining the product's final quality. Several polymer mixtures have been obtained from commercial products and fillers for maximum microwave absorption and their complex permittivity has been properly measured. A continuous industrial microwave oven has been built specifically for this purpose and tested on Crema-Sierra Puerta marble samples and commercial epoxy and polyester resins.

10.
Alcohol Alcohol ; 41(5): 494-504, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16751217

RESUMO

AIMS: Glycoproteins, such as adhesion molecules and growth factors, participate in the regulation of nervous system development. Ethanol affects the synthesis, intracellular transport, distribution, and secretion of N-glycoproteins in different cell types, including astrocytes and hepatocytes, suggesting alterations in the glycosylation process. We analysed the effect of exposure to low doses of ethanol (30 mm, 7 days) on glycosylation in cultured hippocampal neurons. METHODS: Neurons were incubated for short (5 min) and long (90 min) periods with the radioactively labelled carbohydrate precursors 2-deoxy-glucose, N-acetyl-D-mannosamine and mannose. The uptake and metabolism of these precursors, as well as the radioactivity distribution in protein gels, were analysed. The levels of the glucose transporters GLUT1 and GLUT3 were also determined. RESULTS: Ethanol exposure reduces the synthesis of proteins, DNA and RNA and decreased the uptake of mannose, but not of 2-deoxy-glucose and N-acetyl-D-mannosamine, and it increased the protein levels of both glucose transporters. Moreover, it altered the carbohydrate moiety of several proteins. Finally, alcohol treatment results in an increment of cell surface glycoconjugates containing terminal non-reduced mannose. CONCLUSIONS: Alcohol-induced alterations in glycosylation of proteins in neurons could be a key mechanism involved in the teratogenic effects of alcohol exposure on brain development.


Assuntos
Etanol/farmacologia , Hipocampo/citologia , Monossacarídeos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Western Blotting , Divisão Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Técnica Indireta de Fluorescência para Anticorpo , Transportador de Glucose Tipo 1 , Glicosilação/efeitos dos fármacos , Microscopia Eletrônica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...