Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 31(6): 2058-2069, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33960547

RESUMO

Recirculating air purification technologies are employed as potential means of reducing exposure to aerosol particles and airborne viruses. Toward improved testing of recirculating air purification units, we developed and applied a medium-scale single-pass wind tunnel test to examine the size-dependent collection of particles and the collection and inactivation of viable bovine coronavirus (BCoV, a betacoronavirus), porcine respiratory coronavirus (PRCV, an alphacoronavirus), and influenza A virus (IAV), by a commercial air purification unit. The tested unit, the Molekule Air Mini, incorporates a MERV 16 filter as well as a photoelectrochemical oxidating layer. It was found to have a collection efficiency above 95.8% for all tested particle diameters and flow rates, with collection efficiencies above 99% for supermicrometer particles with the minimum collection efficiency for particles smaller than 100 nm. For all three tested viruses, the physical tracer-based log reduction was near 2.0 (99% removal). Conversely, the viable virus log reductions were found to be near 4.0 for IAV, 3.0 for BCoV, and 2.5 for PRCV, suggesting additional inactivation in a virus family- and genus-specific manner. In total, this work describes a suite of test methods which can be used to rigorously evaluate the efficacy of recirculating air purification technologies.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Coronavirus , Orthomyxoviridae/isolamento & purificação , Aerossóis , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Coronavirus/isolamento & purificação , Filtração/instrumentação , Estresse Oxidativo , Tamanho da Partícula
2.
Environ Sci Technol ; 55(7): 4174-4182, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33263988

RESUMO

Control technologies to inactivate airborne viruses effectively are needed during the ongoing SARS-CoV-2 pandemic, and to guard against airborne transmitted diseases. We demonstrate that sealed UV-C flow reactors operating with fluences near 253 ± 1 nm of 13.9-49.6 mJ cm-2 efficiently inactivate coronaviruses in an aerosol. For measurements, porcine respiratory coronavirus (PRCV) was nebulized in a custom-built, 3.86 m wind tunnel housed in a biosafety level class II facility. The single pass log10 reduction of active coronavirus was in excess of 2.2 at a flow rate of 2439 L min-1 (13.9 mJ cm-2) and in excess of 3.7 (99.98% removal efficiency) at 684 L min-1 (49.6 mJ cm-2). Because virus titers resulting from sampling downstream of the UV-C reactor were below the limit of detection, the true log reduction is likely even higher than measured. Comparison of virus titration results to reverse transcriptase quantitative PCR and measurement of fluorescein concentrations (doped into the nebulized aerosol) reveals that the reduction in viable PRCV is primarily due to UV-C based inactivation, as opposed to physical collection of virus. The results confirm that UV-C flow reactors can efficiently inactivate coronaviruses through incorporation into HVAC ducts or recirculating air purifiers.


Assuntos
COVID-19 , Coronavirus , Aerossóis , Humanos , SARS-CoV-2 , Raios Ultravioleta
3.
Am J Infect Control ; 48(10): 1237-1243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603849

RESUMO

BACKGROUND: To mitigate potential exposure of healthcare workers (HCWs) to SARS-CoV-2 via aerosol routes, we have developed a portable hood which not only creates a barrier between HCW and patient, but also utilizes negative pressure with filtration of aerosols by a high-efficiency particulate air filter. MATERIAL AND METHODS: The hood has iris-port openings for access to the patient, and an opening large enough for a patient's head and upper torso. The top of the hood is a high-efficiency particulate air filter connected to a blower to apply negative pressure. We determined the aerosol penetration from outside to inside in laboratory experiments. RESULTS: The penetration of particles from within the hood to the breathing zones of HCWs outside the hood was near 10-4 (0.01%) in the 200-400 nm size range, and near 10-3 (0.1%) for smaller particles. Penetration values for particles in the 500 nm-5 µm range were below 10-2 (1%). Fluorometric analysis of deposited fluorescein particles on the personal protective equipment of an HCW revealed that negative pressure reduces particle deposition both outside and inside the hood. CONCLUSIONS: We find that negative pressure hoods can be effective controls to mitigate aerosol exposure to HCWs, while simultaneously allowing access to patients.


Assuntos
Infecções por Coronavirus/prevenção & controle , Filtração/instrumentação , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/prevenção & controle , Infecções Respiratórias/prevenção & controle , Adulto , Betacoronavirus , COVID-19 , Infecções por Coronavirus/transmissão , Desenho de Equipamento , Feminino , Filtração/métodos , Pessoal de Saúde , Humanos , Masculino , Pneumonia Viral/transmissão , Infecções Respiratórias/transmissão , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...