Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Protein Sci ; 33(2): e4868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100281

RESUMO

Carbonyl-carbonyl interactions in peptides and proteins attracted considerable interest in recent years. Here, we report a survey of carbonyl-carbonyl interactions in cyclic peptides, depsipeptides, peptoids and discuss the relationship between backbone torsion angles and CO∙∙∙CO distances. In general, φ values in the range between -40° and -90° and between 40° and 90° correspond to CO∙∙∙CO distances below 3.22 Å. By extending the analysis of carbonyl-carbonyl interactions in different types of beta turns in proteins, we also highlight the role of direct or reciprocal carbonyl-carbonyl interactions in stabilizing the beta turn conformation for each specific type. We confirmed the new type II beta turn, detected by Dunbrack and coworkers, and named Pa, and detect the presence of a direct carbonyl-carbonyl interaction between the second and third residues of the turn. We also evidenced the existence of another new type II beta turn, named pA (following Dunbrack's notation), which represents the alternative conformation of Pa with opposite φ and ψ values and is characterized by a direct carbonyl-carbonyl interaction between the second and third residues of the turn. Finally, we show that the occurrence of CO∙∙∙CO interactions could be also advocated to explain from a chemical point of view the diversity of turn types.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/química , Conformação Proteica , Peptídeos Cíclicos , Ligação de Hidrogênio
2.
Comput Struct Biotechnol J ; 21: 5620-5629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047234

RESUMO

The ability to predict a protein's three-dimensional conformation represents a crucial starting point for investigating evolutionary connections with other members of the corresponding protein family, examining interactions with other proteins, and potentially utilizing this knowledge for the purpose of rational drug design. In this work, we evaluated the feasibility of improving AlphaFold2's three-dimensional protein predictions by developing a novel pipeline (AlphaMod) that incorporates AlphaFold2 with MODELLER, a template-based modeling program. Additionally, our tool can drive a comprehensive quality assessment of the tertiary protein structure by incorporating and comparing a set of different quality assessment tools. The outcomes of selected tools are combined into a composite score (BORDASCORE) that exhibits a meaningful correlation with GDT_TS and facilitates the selection of optimal models in the absence of a reference structure. To validate AlphaMod's results, we conducted evaluations using two distinct datasets summing up to 72 targets, previously used to independently assess AlphaFold2's performance. The generated models underwent evaluation through two methods: i) averaging the GDT_TS scores across all produced structures for a single target sequence, and ii) a pairwise comparison of the best structures generated by AlphaFold2 and AlphaMod. The latter, within the unsupervised setups, shows a rising accuracy of approximately 34% over AlphaFold2. While, when considering the supervised setup, AlphaMod surpasses AlphaFold2 in 18% of the instances. Finally, there is an 11% correspondence in outcomes between the diverse methodologies. Consequently, AlphaMod's best-predicted tertiary structures in several cases exhibited a significant improvement in the accuracy of the predictions with respect to the best models obtained by AlphaFold2. This pipeline paves the way for the integration of additional data and AI-based algorithms to further improve the reliability of the predictions.

3.
Front Mol Biosci ; 10: 1194962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351551

RESUMO

A long-lasting goal of computational biochemists, medicinal chemists, and structural biologists has been the development of tools capable of deciphering the molecule-molecule interaction code that produces a rich variety of complex biomolecular assemblies comprised of the many different simple and biological molecules of life: water, small metabolites, cofactors, substrates, proteins, DNAs, and RNAs. Software applications that can mimic the interactions amongst all of these species, taking account of the laws of thermodynamics, would help gain information for understanding qualitatively and quantitatively key determinants contributing to the energetics of the bimolecular recognition process. This, in turn, would allow the design of novel compounds that might bind at the intermolecular interface by either preventing or reinforcing the recognition. HINT, hydropathic interaction, was a model and software code developed from a deceptively simple idea of Donald Abraham with the close collaboration with Glen Kellogg at Virginia Commonwealth University. HINT is based on a function that scores atom-atom interaction using LogP, the partition coefficient of any molecule between two phases; here, the solvents are water that mimics the cytoplasm milieu and octanol that mimics the protein internal hydropathic environment. This review summarizes the results of the extensive and successful collaboration between Abraham and Kellogg at VCU and the group at the University of Parma for testing HINT in a variety of different biomolecular interactions, from proteins with ligands to proteins with DNA.

4.
Front Mol Biosci ; 10: 1169109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234922

RESUMO

Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging. However, the application of recent advancements in genome sequencing/analysis technologies and computer-aided tools for predicting phenotype-genotype associations can bring significant benefits to this field. In this review, we highlight the most relevant online resources and computational tools for genome interpretation that can enhance the diagnosis, clinical management, and development of treatments for rare disorders. Our focus is on resources for interpreting single nucleotide variants. Additionally, we present use cases for interpreting genetic variants in clinical settings and review the limitations of these results and prediction tools. Finally, we have compiled a curated set of core resources and tools for analyzing rare disease genomes. Such resources and tools can be utilized to develop standardized protocols that will enhance the accuracy and effectiveness of rare disease diagnosis.

5.
Trends Biochem Sci ; 48(7): 590-596, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031054

RESUMO

Investigating large datasets of biological information by automatic procedures may offer chances of progress in knowledge. Recently, tremendous improvements in structural biology have allowed the number of structures in the Protein Data Bank (PDB) archive to increase rapidly, in particular those for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated proteins. However, their automatic analysis can be hampered by the nonuniform descriptors used by authors in some records of the PDB and PDBx/mmCIF files. In this opinion article we highlight the difficulties encountered in automating the analysis of hundreds of structures, suggesting that further standardization of the description of these molecular entities and of their attributes, generalized to the macromolecular structures contained in the PDB, might generate files more suitable for automatized analyses of a large number of structures.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas/química , Estrutura Molecular , Bases de Dados de Proteínas , Conformação Proteica
7.
PLoS Comput Biol ; 19(2): e1010846, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780436

RESUMO

In Italian universities, bioinformatics courses are increasingly being incorporated into different study paths. However, the content of bioinformatics courses is usually selected by the professor teaching the course, in the absence of national guidelines that identify the minimum indispensable knowledge in bioinformatics that undergraduate students from different scientific fields should achieve. The Training&Teaching group of the Bioinformatics Italian Society (BITS) proposed to university professors a survey aimed at portraying the current situation of bioinformatics courses within undergraduate curricula in Italy (i.e., bioinformatics courses activated within both bachelor's and master's degrees). Furthermore, the Training&Teaching group took a cue from the survey outcomes to develop recommendations for the design and the inclusion of bioinformatics courses in academic curricula. Here, we present the outcomes of the survey, as well as the BITS recommendations, with the hope that they may support BITS members in identifying learning outcomes and selecting content for their bioinformatics courses. As we share our effort with the broader international community involved in teaching bioinformatics at academic level, we seek feedback and thoughts on our proposal and hope to start a fruitful debate on the topic, including how to better fulfill the real bioinformatics knowledge needs of the research and the labor market at both the national and international level.


Assuntos
Currículo , Estudantes , Humanos , Itália , Inquéritos e Questionários , Aprendizagem
8.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956778

RESUMO

The SARS-CoV-2 variant Omicron is characterized, among others, by more than 30 amino acid changes occurring on the spike glycoprotein with respect to the original SARS-CoV-2 spike protein. We report a comprehensive analysis of the effects of the Omicron spike amino acid changes in the interaction with human antibodies, obtained by modeling them into selected publicly available resolved 3D structures of spike-antibody complexes and investigating the effects of these mutations at structural level. We predict that the interactions of Omicron spike with human antibodies can be either negatively or positively affected by amino acid changes, with a predicted total loss of interactions only in a few complexes. Moreover, our analysis applied also to the spike-ACE2 interaction predicts that these amino acid changes may increase Omicron transmissibility. Our approach can be used to better understand SARS-CoV-2 transmissibility, detectability, and epidemiology and represents a model to be adopted also in the case of other variants.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos/genética , Enzima de Conversão de Angiotensina 2 , Humanos , Mutação , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus
9.
Comput Struct Biotechnol J ; 20: 3924-3934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35950183

RESUMO

The microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTGase) is widely used for industrial applications. However, in the last decades, TGases from other bacteria have been described. We focused our attention on TGase, from Kutzneria albida (KalbTGase), recently characterized as more selective than MTGase and proposed for applications in drug delivery. By comparison of the crystallographic structures, the volume of the catalytic site results smaller in KalbTGase. We compared KalbTGase and MTGase structural flexibility by molecular dynamics (MD) simulations at different conditions. KalbTGase is more rigid than MTGase at 300 K, but the catalytic site has a preserved conformation in both structures. Preliminary studies at higher temperatures suggest that KalbTGase acquires enhanced conformational flexibility far from the active site region. The volume of the catalytic active site pocket of KalbTGase at room temperature is smaller than that of MTGase, and decreases at 335 K, remaining stable after further temperature increase. On the contrary, in MTGase the pocket volume continues to decrease as the temperature increases. Overall, the results of our study suggest that at room temperature the enhanced specificity of KalbTGase could be related to a more closed catalytic pocket and lower flexibility than MTGase. Moreover, by preliminary results at higher temperature, KalbTGase structural flexibility suggests an adaptability to different substrates not recognized at room temperature. Lower adaptability of MTGase at higher temperature with a reduction of the catalytic pocket, instead, suggests a reduction of its activity.

10.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595532

RESUMO

Pharmacological chaperones are chemical compounds able to bind proteins and stabilize them against denaturation and following degradation. Some pharmacological chaperones have been approved, or are under investigation, for the treatment of rare inborn errors of metabolism, caused by genetic mutations that often can destabilize the structure of the wild-type proteins expressed by that gene. Given that, for rare diseases, there is a general lack of pharmacological treatments, many expectations are poured out on this type of compounds. However, their discovery is not straightforward. In this review, we would like to focus on the computational methods that can assist and accelerate the search for these compounds, showing also examples in which these methods were successfully applied for the discovery of promising molecules belonging to this new category of pharmacologically active compounds.


Assuntos
Chaperonas Moleculares , Doenças Raras , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Mutação , Doenças Raras/tratamento farmacológico
11.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268848

RESUMO

Human menin is a nuclear protein that participates in many cellular processes, as transcriptional regulation, DNA damage repair, cell signaling, cell division, proliferation, and migration, by interacting with many other proteins. Mutations of the gene encoding menin cause multiple endocrine neoplasia type 1 (MEN1), a rare autosomal dominant disorder associated with tumors of the endocrine glands. In order to characterize the structural and functional effects at protein level of the hundreds of missense variations, we investigated by computational methods the wild-type menin and more than 200 variants, predicting the amino acid variations that change secondary structure, solvent accessibility, salt-bridge and H-bond interactions, protein thermostability, and altering the capability to bind known protein interactors. The structural analyses are freely accessible online by means of a web interface that integrates also a 3D visualization of the structure of the wild-type and variant proteins. The results of the study offer insight into the effects of the amino acid variations in view of a more complete understanding of their pathological role.


Assuntos
Aminoácidos
12.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641485

RESUMO

The third step of the catabolism of galactose in mammals is catalyzed by the enzyme galactose-1-phosphate uridylyltransferase (GALT), a homodimeric enzyme with two active sites located in the proximity of the intersubunit interface. Mutations of this enzyme are associated to the rare inborn error of metabolism known as classic galactosemia; in particular, the most common mutation, associated with the most severe phenotype, is the one that replaces Gln188 in the active site of the enzyme with Arg (p.Gln188Arg). In the past, and more recently, the structural effects of this mutation were deduced on the static structure of the wild-type human enzyme; however, we feel that a dynamic view of the proteins is necessary to deeply understand their behavior and obtain tips for possible therapeutic interventions. Thus, we performed molecular dynamics simulations of both wild-type and p.Gln188Arg GALT proteins in the absence or in the presence of the substrates in different conditions of temperature. Our results suggest the importance of the intersubunit interactions for a correct activity of this enzyme and can be used as a starting point for the search of drugs able to rescue the activity of this enzyme in galactosemic patients.


Assuntos
Galactosemias/patologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , UTP-Hexose-1-Fosfato Uridililtransferase/química , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Galactosemias/genética , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Conformação Proteica , Relação Estrutura-Atividade , UTP-Hexose-1-Fosfato Uridililtransferase/genética
13.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641605

RESUMO

Classic galactosemia is an inborn error of metabolism associated with mutations that impair the activity and the stability of galactose-1-phosphate uridylyltransferase (GALT), catalyzing the third step in galactose metabolism. To date, no treatments (including dietary galactose deprivation) are able to prevent or alleviate the long-term complications affecting galactosemic patients. Evidence that arginine is able to improve the activity of the human enzyme expressed in a prokaryotic model of classic galactosemia has induced researchers to suppose that this amino acid could act as a pharmacochaperone, but no effects were detected in four galactosemic patients treated with this amino acid. Given that no molecular characterizations of the possible effects of arginine on GALT have been performed, and given that the samples of patients treated with arginine are extremely limited for drawing definitive conclusions at the clinical level, we performed computational simulations in order to predict the interactions (if any) between this amino acid and the enzyme. Our results do not support the possibility that arginine could function as a pharmacochaperone for GALT, but information obtained by this study could be useful for identifying, in the future, possible pharmacochaperones for this enzyme.


Assuntos
Arginina/química , Arginina/metabolismo , Galactosemias/genética , Galactosemias/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/química , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Humanos , Chaperonas Moleculares/química , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Conformação Proteica
15.
BMC Bioinformatics ; 22(Suppl 7): 345, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225665

RESUMO

BACKGROUND: Despite decades on developing dedicated Web tools, it is still difficult to predict correctly the changes of the thermodynamic stability of proteins caused by mutations. Here, we assessed the reliability of five recently developed Web tools, in order to evaluate the progresses in the field. RESULTS: The results show that, although there are improvements in the field, the assessed predictors are still far from ideal. Prevailing problems include the bias towards destabilizing mutations, and, in general, the results are unreliable when the mutation causes a ΔΔG within the interval ± 0.5 kcal/mol. We found that using several predictors and combining their results into a consensus is a rough, but effective way to increase reliability of the predictions. CONCLUSIONS: We suggest all developers to consider in their future tools the usage of balanced data sets for training of predictors, and all users to combine the results of multiple tools to increase the chances of having correct predictions about the effect of mutations on the thermodynamic stability of a protein.


Assuntos
Proteínas , Mutação , Estabilidade Proteica , Proteínas/genética , Reprodutibilidade dos Testes , Termodinâmica
16.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050359

RESUMO

MOTIVATION: Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on 'multiple network analysis' in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and (3) predict what are the primary and secondary effects of gene mutations involved in human diseases. RESULTS: By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma (mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense combined mutation were considered. AVAILABILITY: The procedures used in this paper are part of the Cytoscape Core, available at (www.cytoscape.org). Data used here on mCRC patients have been published in [55]. SUPPLEMENTARY INFORMATION: A supplementary file containing a more detailed discussion of this case study and other cases is available at the journal site as Supplementary Data.


Assuntos
Biomarcadores Tumorais , Biologia Computacional/métodos , Suscetibilidade a Doenças , Neoplasias/etiologia , Medicina de Precisão/métodos , Redes Reguladoras de Genes , Humanos , Redes e Vias Metabólicas , Neoplasias/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais
17.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435500

RESUMO

ß-lactam antibiotics are among the most important and widely used antimicrobials worldwide and are comprised of a large family of compounds, obtained by chemical modifications of the common scaffolds. Usually these modifications include the addition of active groups, but less frequently, molecules were synthesized in which either two ß-lactam rings were joined to create a single bifunctional compound, or the azetidinone ring was joined to another antibiotic scaffold or another molecule with a different activity, in order to create a molecule bearing two different pharmacophoric functions. In this review, we report some examples of these derivatives, highlighting their biological properties and discussing how this strategy can lead to the development of innovative antibiotics that can represent either novel weapons against the rampant increase of antimicrobial resistance, or molecules with a broader spectrum of action.


Assuntos
Antibacterianos/química , Azetidinas/química , Lactamas Macrocíclicas/química , beta-Lactamas/química , Animais , Antibacterianos/farmacologia , Azetidinas/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Calixarenos/química , Calixarenos/farmacologia , Descoberta de Drogas , Humanos , Lactamas Macrocíclicas/farmacologia , beta-Lactamas/farmacologia
18.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32496523

RESUMO

A very large number of computational methods to predict the change in thermodynamic stability of proteins due to mutations have been developed during the last 30 years, and many different web servers are currently available. Nevertheless, most of them suffer from severe drawbacks that decrease their general reliability and, consequently, their applicability to different goals such as protein engineering or the predictions of the effects of mutations in genetic diseases. In this review, we have summarized all the main approaches used to develop these tools, with a survey of the web servers currently available. Moreover, we have also reviewed the different assessments made during the years, in order to allow the reader to check directly the different performances of these tools, to select the one that best fits his/her needs, and to help naïve users in finding the best option for their needs.


Assuntos
Biologia Computacional/métodos , Mutação , Estabilidade Proteica , Proteínas/química , Doenças Genéticas Inatas/genética , Humanos , Proteínas/genética , Termodinâmica
19.
Brief Bioinform ; 22(2): 726-741, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33147623

RESUMO

Drug repurposing involves the identification of new applications for existing drugs at a lower cost and in a shorter time. There are different computational drug-repurposing strategies and some of these approaches have been applied to the coronavirus disease 2019 (COVID-19) pandemic. Computational drug-repositioning approaches applied to COVID-19 can be broadly categorized into (i) network-based models, (ii) structure-based approaches and (iii) artificial intelligence (AI) approaches. Network-based approaches are divided into two categories: network-based clustering approaches and network-based propagation approaches. Both of them allowed to annotate some important patterns, to identify proteins that are functionally associated with COVID-19 and to discover novel drug-disease or drug-target relationships useful for new therapies. Structure-based approaches allowed to identify small chemical compounds able to bind macromolecular targets to evaluate how a chemical compound can interact with the biological counterpart, trying to find new applications for existing drugs. AI-based networks appear, at the moment, less relevant since they need more data for their application.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Humanos , Simulação de Acoplamento Molecular
20.
Sci Rep ; 10(1): 7758, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385356

RESUMO

Gene-environment interactions, by means of abnormal macromolecular intestinal adsorption, is one of the possible causes of autism spectrum disorders (ASD) predominantly in patients with gastrointestinal disorders. Pre-haptoglobin-2 (zonulin), encoded by the Haptoglobin (HP) allele-2 gene, enhances the intestinal permeability by modulation of intercellular tight junctions. The two alleles of HP, HP1 and HP2, differ for 2 extra exons in HP2 that result in exon duplication undetectable by classic genome-wide association studies. To evaluate the role of HP2 in ASD pathogenesis and to set up a method to discriminate HP alleles, Italian subjects with ASD (n = 398) and healthy controls (n = 379) were genotyped by PCR analysis; subsequently, the PCR results were integrated with microarray genotypes (Illumina Human Omni 1S-8), obtained using a subset from the same subjects, and then we developed a computational method to predict HP alleles. On the contrary to our expectations, there was no association between HP2 and ASD (P > 0.05), and there was no significant allele association in subjects with ASD with or without gastrointestinal disorders (P > 0.05). With the aid of bioinformatics analysis, from a window frame of ~2 Mb containing 314 SNPs, we obtain imputation accuracy (r2) between 0.4 and 0.9 (median 0.7) and correct predictions were between 70% and 100% (median 90%). The conclusions endorse that enhanced intestinal permeability in subjects with ASD should not be imputed to HP2 but to other members of the zonulin family and/or to environmental factors.


Assuntos
Alelos , Transtorno do Espectro Autista/genética , Haptoglobinas/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...