Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(13): 9193-9216, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34138563

RESUMO

Failure to resolve inflammation underlies many prevalent pathologies. Recent insights have identified lipid mediators, typified by lipoxins (LXs), as drivers of inflammation resolution, suggesting potential therapeutic benefit. We report the asymmetric preparation of novel quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms). Eight novel compounds were screened for their impact on inflammatory responses. Structure-activity relationship (SAR) studies showed that (R)-6 (also referred to as AT-02-CT) was the most efficacious and potent anti-inflammatory compound of those tested. (R)-6 significantly attenuated lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and vascular smooth muscle cells. The molecular target of (R)-6 was investigated. (R)-6 activated the endogenous LX receptor formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent with in vitro observations, (R)-6 attenuated inflammatory responses. These results support the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Quinoxalinas/farmacologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Monócitos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
2.
Eur J Med Chem ; 162: 80-108, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30419493

RESUMO

Lipoxins (LXs) are endogenously generated eicosanoids with potent bio-actions consistent with attenuation of inflammation. The costly synthesis and metabolic instability of LXs may limit their therapeutic potential. Here we report the synthesis and characterization of novel imidazole-/oxazole-containing synthetic-LX-mimetics (sLXms). The key steps of asymmetric synthesis of putative sLXms include a Suzuki reaction and an asymmetric ketone reduction. The effect of the novel compounds on inflammatory responses was assessed using a human monocyte cell line stably expressing a Nuclear Factor Kappa B (NFkB) reporter gene, by investigating downstream cytokine secretion. The potential interaction of the imidazoles/oxazoles with the molecular target of LXs, i.e. G-protein coupled receptor (GPCR) Formyl Peptide Receptor 2 (ALX/FPR2) was investigated using a cell system where ALX/FPR2 is coupled to the Gαq subunit and receptor interaction determined by mobilisation of intracellular calcium. In vivo anti-inflammatory effects were assessed using a murine zymosan-induced peritonitis model. Overall, structure-activity relationship (SAR) studies demonstrated that the (R)-epimer of 6C-dimethyl-imidazole (1R)-11 was the most potent and efficient anti-inflammatory agent, among the ten compounds tested. This molecule significantly attenuated LPS-induced NFkB activity, reduced the release of several pro-inflammatory cytokines and inhibited peritonitis-associated neutrophil infiltration in vivo. The underlying mechanism for those actions appeared to be through FPR2 activation. These data support the therapeutic potential of imidazole-containing sLXms in the context of novel inflammatory regulators.


Assuntos
Imidazóis/química , Lipoxinas/síntese química , Oxazóis/química , Animais , Linhagem Celular , Humanos , Inflamação/tratamento farmacológico , Lipoxinas/farmacologia , Camundongos , Mimetismo Molecular , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Peritonite/tratamento farmacológico , Receptores de Formil Peptídeo/metabolismo
3.
Diabetes ; 67(12): 2657-2667, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213823

RESUMO

Increasing evidence points to the fact that defects in the resolution of inflammatory pathways predisposes individuals to the development of chronic inflammatory diseases, including diabetic complications such as accelerated atherosclerosis. The resolution of inflammation is dynamically regulated by the production of endogenous modulators of inflammation, including lipoxin A4 (LXA4). Here, we explored the therapeutic potential of LXA4 and a synthetic LX analog (Benzo-LXA4) to modulate diabetic complications in the streptozotocin-induced diabetic ApoE-/- mouse and in human carotid plaque tissue ex vivo. The development of diabetes-induced aortic plaques and inflammatory responses of aortic tissue, including the expression of vcam-1, mcp-1, il-6, and il-1ß, was significantly attenuated by both LXA4 and Benzo-LXA4 in diabetic ApoE-/- mice. Importantly, in mice with established atherosclerosis, treatment with LXs for a 6-week period, initiated 10 weeks after diabetes onset, led to a significant reduction in aortic arch plaque development (19.22 ± 2.01% [diabetic]; 12.67 ± 1.68% [diabetic + LXA4]; 13.19 ± 1.97% [diabetic + Benzo-LXA4]). Secretome profiling of human carotid plaque explants treated with LXs indicated changes to proinflammatory cytokine release, including tumor necrosis factor-α and interleukin-1ß. LXs also inhibited platelet-derived growth factor-stimulated vascular smooth muscle cell proliferation and transmigration and endothelial cell inflammation. These data suggest that LXs may have therapeutic potential in the context of diabetes-associated vascular complications.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Aorta/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Lipoxinas/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aterosclerose/etiologia , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Humanos , Inflamação/etiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipoxinas/farmacologia , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo
4.
Diabetes ; 66(8): 2266-2277, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487436

RESUMO

The let-7 miRNA family plays a key role in modulating inflammatory responses. Vascular smooth muscle cell (SMC) proliferation and endothelial cell (EC) dysfunction are critical in the pathogenesis of atherosclerosis, including in the setting of diabetes. Here we report that let-7 levels are decreased in diabetic human carotid plaques and in a model of diabetes-associated atherosclerosis, the diabetic ApoE-/- mouse. In vitro platelet-derived growth factor (PDGF)- and tumor necrosis factor-α (TNF-α)-induced vascular SMC and EC activation was associated with reduced let-7 miRNA expression via Lin28b, a negative regulator of let-7 biogenesis. Ectopic overexpression of let-7 in SMCs inhibited inflammatory responses including proliferation, migration, monocyte adhesion, and nuclear factor-κB activation. The therapeutic potential of restoring let-7 levels using a let-7 mimic was tested: in vitro in SMCs using an endogenous anti-inflammatory lipid (lipoxin A4), ex vivo in murine aortas, and in vivo via tail vein injection in a 24-h murine model. Furthermore, we delivered let-7 mimic to human carotid plaque ex vivo and observed significant changes to the secretome in response to let-7 therapy. Restoration of let-7 expression could provide a new target for an anti-inflammatory approach in diabetic vascular disease.


Assuntos
Aterosclerose/genética , Estenose das Carótidas/genética , Complicações do Diabetes/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Apolipoproteínas E/genética , Artérias Carótidas/citologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/genética , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/administração & dosagem , Músculo Liso Vascular/citologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas de Ligação a RNA , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA