Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animal ; 15(9): 100347, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34455154

RESUMO

Nutritional programming is a concept proposed to be applied in the field of fish nutrition to improve the use of new diets in aquaculture. This study aimed to investigate for the first time the effects of a glucose injection into the yolk at the alevin stage on intermediary metabolism and growth in adult Nile tilapia (Oreochromis niloticus) at 32-37 weeks later in the life. The early stimulus was performed through direct microinjection of 2 M glucose into yolk sacs of Nile tilapia alevin. Subsequently, in adult tilapia, the long-term effects of glucose stimulus on growth performance, blood metabolites, chemical composition in the liver and muscle, expression of genes involved in glucose transport and metabolism (glycolysis and gluconeogenesis) and related pathways (amino acid catabolism and lipogenesis) were investigated. Our results showed that, even though early glucose injection had no effect on growth performance in adult fish, very few significant effects on glucose metabolism were observed. Furthermore, to evaluate the potential metabolic programming after a dietary challenge, a 2 × 2 factorial design with two early stimuli (0.85% NaCl or 2 M glucose) and two different dietary carbohydrate intakes (medium-carbohydrate diet, CHO-M; high-carbohydrate diet, CHO-H) was performed between weeks 33 and 37. As expected, compared with the CHO-M diet, the CHO-H diet led to decreased growth performance, higher glyceamia and triglyceridemia, higher glycogen and lipid levels in the liver as well as down-regulation of gluconeogenesis and amino acid catabolism gene expressions. More interestingly, although early glucose injection had no significant effect on growth performance, it enhanced the capacities for lipogenesis, glycolysis and gluconeogenesis, particularly in fish that were fed the CHO-H diet. Thus, the nutritional programming of tilapia linked to glucose injection into the yolk of alevins is always visible at the adult stage albeit less intense than what we previously observed in juvenile.


Assuntos
Ciclídeos , Animais , Carboidratos , Dieta/veterinária , Gluconeogênese , Glucose
2.
Gene ; 698: 129-140, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30849535

RESUMO

Rainbow trout have, as salmonid fish species, undergone sequential genome duplication events in their evolutionary history. In addition to a teleost-specific whole genome duplication approximately 320-350 million years ago, rainbow trout and salmonids in general underwent an additional salmonid lineage-specific genome duplication event approximately 80 million years ago. Through the recent sequencing of salmonid genome sequences, including the rainbow trout, the identification and study of duplicated genes has become available. A particular focus of interest has been the evolution and regulation of rainbow trout gluconeogenic genes, as recent molecular and gene expression evidence points to a possible contribution of previously uncharacterized gluconeogenic gene paralogues to the rainbow trout long-studied glucose intolerant phenotype. Since the publication of the initial rainbow trout genome draft, resequencing and annotation have further improved genome coverage. Taking advantage of these recent improvements, we here identify a salmonid-specific genome duplication of ancestral mitochondrial phosphoenolpyruvate carboxykinase 2 isoenzyme, we termed pck2a and pck2b. Cytosolic phosphoenolpyruvate carboxykinase (Pck1) and, more recently mitochondrial Pck2, are considered to be the rate-limiting enzymes in de novo gluconeogenesis. Following in silico confirmation of salmonid pck2a and pck2b evolutionary history, we simultaneously profiled cytosolic pck1 and mitochondrial pck2a and pck2b expression in rainbow trout liver under several experimental conditions known to regulate hepatic gluconeogenesis. Cytosolic pck1 abundance was increased by nutritional (diets with a high protein to carbohydrate ratio compared to diets with a low carbohydrate to protein ratio) and glucoregulatory endocrine factors (glucagon and cortisol), revealing that the well-described transcriptional regulation of pck1 in mammals is present in rainbow trout. Conversely, and in contrast to mammals, we here describe endocrine regulation of pck2a (decrease in abundance in response to glucagon infusion), and nutritional, social-status-dependent and hypoxia-dependent regulation of pck2b. Specifically, pck2b transcript abundance increased in trout fed a diet with a low protein to carbohydrate ratio compared to a diet with a high protein to carbohydrate ratio, in dominant fish compared to subordinate fish as well as hypoxia. This specific and differential expression of rainbow trout pck2 ohnologues is indicative of functional diversification, and possible functional consequences are discussed in light of the recently highlighted gluconeogenic roles of mitochondrial pck2 in mammalian models.


Assuntos
Duplicação Gênica/genética , Oncorhynchus mykiss/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Animais , Mapeamento Cromossômico/métodos , Evolução Molecular , Regulação da Expressão Gênica/genética , Genoma/genética , Gluconeogênese/genética , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Oncorhynchus mykiss/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Filogenia , Análise de Sequência de Proteína/métodos
3.
Annu Rev Anim Biosci ; 7: 195-220, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30418804

RESUMO

The rapid development of aquaculture production throughout the world over the past few decades has led to the emergence of new scientific challenges to improve fish nutrition. The diet formulations used for farmed fish have been largely modified in the past few years. However, bottlenecks still exist in being able to suppress totally marine resources (fish meal and fish oil) in diets without negatively affecting growth performance and flesh quality. A better understanding of fish metabolism and its regulation by nutrients is thus mandatory. In this review, we discuss four fields of research that are highly important for improving fish nutrition in the future: ( a) fish genome complexity and subsequent consequences for metabolism, ( b) microRNAs (miRNAs) as new actors in regulation of fish metabolism, ( c) the role of autophagy in regulation of fish metabolism, and ( d) the nutritional programming of metabolism linked to the early life of fish.


Assuntos
Autofagia , Óleos de Peixe/metabolismo , Peixes/metabolismo , Genoma/genética , Genômica , MicroRNAs/genética , Animais , Aquicultura , Dieta/veterinária , Peixes/genética , Estado Nutricional
4.
Theriogenology ; 75(9): 1755-61, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21356550

RESUMO

Regeneration technologies such as androgenesis, intracytoplasmic sperm injection, and nuclear transfer require that handling conditions do not alter oocyte ability to sustain embryo development. One important parameter in the maintenance of oocyte quality in fish is the possibility to prevent oocytes activation during manipulation. In Cyprinid, such activation is known to be delayed when Salmonid coelomic fluid is used as incubation medium. Coelomic fluid however is a biological fluid whose ability to sustain oocyte quality during in vitro incubation may be variable. The purpose of the present work was to explore this variability using Rainbow Trout (Oncorhynchus mykiss) coelomic fluid (TCF) and Goldfish (Carassius auratus) oocytes, and to set up a test which would reflect TCF suitability for Goldfish oocyte incubation. We showed that different TCF induced very different development rates after oocyte incubation for 30 min at 20 °C: at 24h post fertilization (pf) and at hatching, rates ranged between 35% and 110% of the non-incubated controls. When TCF (1 volume) was mixed with tap water (9 volumes), a precipitate developed whose extent was measured by spectrophotometry. This turbidity test proved to be highly correlated to development rates after Goldfish oocyte incubation in TCF (r(2) = 0.83 at hatching, n = 150): TCF with the highest turbidity (> 1.5 absorbance unit at 400 nm) were the ones which altered the most the development rates after incubation (less than 50 % at hatching). This easy and rapid turbidity test can therefore be used as a reliable estimator of TCF suitability for Goldfish oocyte incubation and manipulation.


Assuntos
Líquidos Corporais/química , Técnicas de Cultura de Células , Carpa Dourada , Oncorhynchus mykiss , Oócitos/citologia , Animais , Feminino , Nefelometria e Turbidimetria , Oócitos/crescimento & desenvolvimento , Oócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...