Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 175: 572-585, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529631

RESUMO

A basic sPLA2 (D49) from the venom of snake Agkistrodon piscivorus leucostoma (AplTX-II) was isolated, purified and characterized. We determined the enzymatic and pharmacological profiles of this toxin. AplTX-II was isolated with a high level of purity through reverse phase chromatography and molecular exclusion. The enzyme showed pI 9.48 and molecular weight of 14,003 Da. The enzymatic activity of the AplTX-II depended on Ca2+ pH and temperature. The comparison of the primary structure with other sPLA2s revealed that AplTX-II presented all the structural reasons expected for a basic sPLA2s. Additionally, we have resolved its structure with the docked synthetic substrate NOBA (4-nitro-3-octanoyloxy benzoic acid) by homology modeling, and performed MD simulations with explicit solvent. Structural similarities were found between the enzyme's modeled structure and other snake sPLA2 X-Ray structures, available in the PDB database. NOBA and active-site water molecules spontaneously adopted stable positions and established interactions in full agreement with the reaction mechanism, proposed for the physiological substrate, suggesting that NOBA hydrolysis is an excellent model to study phospholipid hydrolysis.


Assuntos
Agkistrodon/metabolismo , Fosfolipases A2 Secretórias/isolamento & purificação , Venenos de Serpentes/química , Agkistrodon/fisiologia , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/enzimologia , Peso Molecular , Fosfolipases A2 Secretórias/química , Fosfolipases A2 Secretórias/metabolismo , Fosfolipídeos/química , Venenos de Serpentes/isolamento & purificação , Serpentes
2.
Toxins (Basel) ; 11(11)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739403

RESUMO

This work reports the purification and biochemical and functional characterization of ACP-TX-I and ACP-TX-II, two phospholipases A2 (PLA2) from Agkistrodon contortrix pictigaster venom. Both PLA2s were highly purified by a single chromatographic step on a C18 reverse phase HPLC column. Various peptide sequences from these two toxins showed similarity to those of other PLA2 toxins from viperid snake venoms. ACP-TX-I belongs to the catalytically inactive K49 PLA2 class, while ACP-TX-II is a D49 PLA2, and is enzymatically active. ACP-TX-I PLA2 is monomeric, which results in markedly diminished myotoxic and inflammatory activities when compared with dimeric K49 PLA2s, confirming the hypothesis that dimeric structure contributes heavily to the profound myotoxicity of the most active viperid K49 PLA2s. ACP-TX-II exhibits the main pharmacological actions reported for this protein family, including in vivo local myotoxicity, edema-forming activity, and in vitro cytotoxicity. ACP-TX-I PLA2 is cytotoxic to A549 lung carcinoma cells, indicating that cytotoxicity to these tumor cells does not require enzymatic activity.


Assuntos
Venenos de Crotalídeos/metabolismo , Fosfolipases A2/metabolismo , Agkistrodon , Sequência de Aminoácidos , Animais , Fosfolipases A2/química , Homologia de Sequência de Aminoácidos
3.
Int J Biol Macromol ; 141: 1044-1054, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494155

RESUMO

A new weak hemorrhagic metalloproteinase named BtaMP-1 was purified from Bothriopsis taeniata snake venom by molecular exclusion followed by anion exchange chromatographies. This protein showed a molecular mass of 25,968.16 Da and is composed of 218 amino acid residues. The multiple alignments of its partial amino acid sequence showed high structural identity with other P-I class SVMP. BtaMP-1 showed caseinolytic activity that was enhanced by Ca2+ ion, completely inhibited by chelating and reducing agents and can be classified as an α-fibrinogenolytic enzyme. Locally, BtaMP-1 induces hemorrhage and edema, but not myotoxicity. These findings were confirmed by histological analysis of mouse gastrocnemius muscle. "In vitro" studies suggest that BtaMP-1 induce cytotoxicity in myoblast C2C12 but not in the myotubes cell line. BtaMP-1 induced systemic alterations in mice with one MHD and two hours exposure; histological analysis of lungs showed hemorrhagic areas, congestion, and increase the thickness of alveolar septum. Also, this protein induced mild effects on kidney and disruption of coagulation by depletion of fibrinogen plasma levels. This work provides insights into the importance of BtaMP-1 biological effects in envenomation by Bothropsis taeniata snake venom and providing further evidence to understand the role of P-I class SVMP in ophidian envenomation.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Metaloendopeptidases/toxicidade , Sequência de Aminoácidos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular , Masculino , Metaloendopeptidases/química , Camundongos
4.
Toxins (Basel) ; 11(6)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212818

RESUMO

MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 µM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin's action on acetylcholine release at mammalian neuromuscular junctions.


Assuntos
Cobras Corais , Venenos Elapídicos/toxicidade , Canal de Potássio Kv1.2/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/toxicidade , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oócitos/fisiologia , Fosfolipases A2 , Xenopus
5.
Sci Rep ; 8(1): 15908, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30349050

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 8(1): 12067, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104604

RESUMO

Proteins constitute almost 95% of snake venom's dry weight and are produced and released by venom glands in a solubilized form during a snake bite. These proteins are responsible for inducing several pharmacological effects aiming to immobilize and initiate the pre-digestion of the prey. This study shows that proteins can be secreted and confined in snake venom extracellular vesicles (SVEVs) presenting a size distribution between 50 nm and 500 nm. SVEVs isolated from lyophilized venoms collected from four different species of snakes (Agkistrodon contortrix contortrix, Crotalus atrox, Crotalus viridis and Crotalus cerberus oreganus) were analyzed by mass spectrometry-based proteomic, which allowed the identification of proteins belonging to eight main functional protein classes such as SVMPs, serine proteinases, PLA2, LAAO, 5'nucleotidase, C-type lectin, CRISP and Disintegrin. Biochemical assays indicated that SVEVs are functionally active, showing high metalloproteinase and fibrinogenolytic activity besides being cytotoxic against HUVEC cells. Overall, this study comprehensively depicts the protein composition of SVEVs for the first time. In addition, the molecular function of some of the described proteins suggests a central role for SVEVs in the cytotoxicity of the snake venom and sheds new light in the envenomation process.


Assuntos
Venenos de Crotalídeos/análise , Vesículas Extracelulares/química , Proteoma/análise , Proteínas de Répteis/análise , Agkistrodon/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/toxicidade , Crotalus/metabolismo , Vesículas Extracelulares/metabolismo , Fibrinogênio , Células Endoteliais da Veia Umbilical Humana , Humanos , Espectrometria de Massas , Proteoma/metabolismo , Proteoma/toxicidade , Proteômica/métodos , Proteínas de Répteis/metabolismo , Proteínas de Répteis/toxicidade , Testes de Toxicidade/métodos
7.
Eur J Med Chem ; 149: 248-256, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29501945

RESUMO

Currently, the evolving and complex mechanisms of bacterial resistance to conventional antibiotics are increasing, while alternative medicines are drying up, which urges the need to discover novel agents able to kill antibiotic-resistant bacteria. Lys49 phospholipase A2s (PLA2s) from snake venoms are multifunctional toxins able to induce a huge variety of therapeutic effects and consequently serve as templates for new drug leads. Hence, the present study was aimed at the synthesis of oligopeptides mimicking regions of the antibacterial Lys49 PLA2 toxin (CoaTx-II), recently isolated from Crotalus oreganus abyssus snake venom, to identify small peptides able to reproduce the therapeutic action of the toxin. Five peptides, representing major regions of interest within CoaTx-II, were synthesized and screened for their antibacterial properties. The 13-mer peptide pC-CoaTxII, corresponding to residues 115-129 of CoaTx-II, was able to reproduce the promising bactericidal effect of the toxin against multi-resistant clinical isolates. Peptide pC-CoaTxII is mainly composed by positively charged and hydrophobic amino acids, a typical trait in most antimicrobial peptides, and presented no defined secondary structure in aqueous environment. The physicochemical properties of pC-CoaTxII are favorable towards a strong interaction with anionic lipid membranes as those in bacteria. Additional in silico studies suggest formation of a water channel across the membrane upon peptide insertion, eventually leading to bacterial cell disruption and death. Overall, our findings confirm the valuable potential of snake venom toxins towards design and synthesis of novel antimicrobials, thus representing key insights towards development of alternative efficient antimicrobials to fight bacterial resistance to current antibiotics.


Assuntos
Antibacterianos/síntese química , Oligopeptídeos/síntese química , Fosfolipases A2/química , Venenos de Serpentes/enzimologia , Animais , Permeabilidade da Membrana Celular , Crotalus , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Oligopeptídeos/química , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Peptidomiméticos/síntese química , Solubilidade
8.
Biochem Res Int ; 2016: 2053459, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635261

RESUMO

Neuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B. marajoensis venom. CBC incubated with toxins showed irreversible twitch tension blockade and unaffected KCl- and ACh-evoked contractures, and the positive colabelling of acetylcholine receptors confirmed that their action was primarily at the motor nerve terminal. Hypercontraction and loose myofilaments and synaptic vesicle depletion and motor nerve damage indicated that the toxins displayed both myotoxic and neurotoxic effect. The blockade resulted from interference on synaptophysin, synaptobrevin, and SNAP25 proteins leading to the conclusion that BmjeTX-I and BmjeTX-II affected neurotransmitter release machinery by preventing the docking of synaptic vesicles to the axolemma of the nerve terminal.

9.
Toxicon ; 115: 13-21, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927324

RESUMO

Snake venom is a complex mixture of active compounds consisting of 80-90% proteins and peptides that exhibit a variety of biological actions that are not completely clarified or identified. Of these, phospholipase A2 is one of the molecules that has shown great biotechnological potential. The objectives of this study were to isolate, biochemically and biologically characterize a Lys49 phospholipase A2 homologue from the venom of Bothrops neuwiedi urutu. The protein was purified after two chromatographic steps, anion exchange and reverse phase. The purity and relative molecular mass were assessed by SDS-PAGE, observing a molecular weight typical of PLA2s, subsequently confirmed by mass spectrometry obtaining a mass of 13,733 Da. As for phospholipase activity, the PLA2 proved to be enzymatically inactive. The analyses by Edman degradation and sequencing of the peptide fragments allowed for the identification of 108 amino acid residues; this sequence showed high identity with other phospholipases A2 from Bothrops snake venoms, and identified this molecule as a novel PLA2 isoform from B. neuwiedi urutu venom, called BnuTX-I. In murine models, both BnuTX-I as well as the venom induced edema and myotoxic responses. The cytotoxic effect of BnuTX-I in murine macrophages was observed at concentrations above 12 µg/mL. BnuTX-I also presented antimicrobial activity against gram-positive and negative bacterial strains, having the greatest inhibitory effect on Pseudomonas aeruginosa. The results allowed for the identification of a new myotoxin isoform with PLA2 structure with promising biotechnological applications.


Assuntos
Antibacterianos/farmacologia , Bothrops/metabolismo , Venenos de Crotalídeos/química , Fosfolipases A2/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Edema/sangue , Edema/induzido quimicamente , Edema/patologia , Eletroforese em Gel de Poliacrilamida , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interleucina-1beta/sangue , Masculino , Camundongos , Fosfolipases A2/química , Conformação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Alinhamento de Sequência , Fator de Necrose Tumoral alfa/sangue
10.
J Proteomics ; 131: 131-139, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26481240

RESUMO

Snake venoms are composed of approximately 90% of proteins with several pharmacological activities having high potential in research as biological tools. One of the most abundant compounds is phospholipases A2 (PLA2), which are the most studied venom protein due to their wide pharmacological activity. Using a combination of chromatographic steps, a new PLA2 K49 was isolated and purified from the whole venom of the Bothriopsis taeniata and submitted to analyses mass spectrometry. An automatic "de novo" sequencing of this new PLA2 K49 denominated Btt-TX was performed using Peaks Studio 6 for analysis of the spectra. Additionally, a triplex approach CID/HCD/ETD has been performed, to generate higher coverage of the sequence of the protein. Structural studies correlating biological activities were made associating specific Btt-TX regions and myotoxic activity. Lysine acetylation was performed to better understand the mechanism of membrane interaction, identifying the extreme importance of the highly hydrophobic amino acids L, P and F for disruption of the membrane. Our myotoxical studies show a possible membrane disruption mechanism by Creatine Kinase release without a noticeable muscle damage, that probably occurred without phospholipid hydrolyses, but with a probable penetration of the hydrophobic amino acids present in the C-terminal region of the protein.


Assuntos
Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/toxicidade , Músculo Esquelético/efeitos dos fármacos , Análise de Sequência de Proteína/métodos , Venenos de Víboras/química , Viperidae/metabolismo , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Camundongos , Dados de Sequência Molecular , Relação Estrutura-Atividade , Venenos de Víboras/toxicidade
11.
Phytochemistry ; 118: 224-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26330217

RESUMO

Herein described is the biochemical characterisation, including in vitro and in vivo assays, for a proteinase inhibitor purified from Clitoria fairchildiana seeds (CFPI). Purification was performed by hydrophobic interaction and gel filtration chromatography. Kinetic studies of the purified inhibitor showed a competitive-type inhibitory activity against bovine trypsin and chymotrypsin, with an inhibition stoichiometry of 1:1 for both enzymes. The inhibition constants against trypsin and chymotrypsin were 3.3 × 10(-10) and 1.5 × 10(-10)M, respectively, displaying a tight binding property. SDS-PAGE showed that CFPI has a single polypeptide chain with an apparent molecular mass of 15 kDa under non-reducing conditions. However, MALDI-TOF analysis demonstrated a molecular mass of 7.973 kDa, suggesting that CFPI is dimeric in solution. The N-terminal sequence of CFPI showed homology with members of the Bowman-Birk inhibitor family. CFPI remained stable to progressive heating for 30 min to each temperature range of 37 up to 100 °C and CD analysis exhibited no changes in spectra at 207 nm after heating at 90 °C and subsequent cooling. Moreover, CFPI was active over a wide pH range (2-10). In contrast, reduction with DTT resulted in a loss of inhibitory activity against trypsin and chymotrypsin. CFPI also exhibited significant inhibitory activity against larval midgut trypsin enzymes from Anagasta kuehniella (76%), Diatraea saccharalis (59%) and Heliothis virescens (49%). Its insecticidal properties were further analysed by bioassays and confirmed by negative impact on A. kuehniella development.


Assuntos
Clitoria/química , Inseticidas , Inibidores de Proteases , Sementes/química , Animais , Bovinos , Quimotripsina/análise , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Cinética , Larva/efeitos dos fármacos , Larva/metabolismo , Peso Molecular , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Tripsina/análise
12.
Toxicol Lett ; 238(1): 7-16, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26129711

RESUMO

Four proteins with phospholipase A2 (PLA2) activity, designated P9a(Cdt-PLA2), P9b(Cdt-PLA2), P10a(Cdt-PLA2) and P10b(Cdt-PLA2) were purified from the venom of Crotalus durissus terrificus by two chromatographic steps: a gel filtration and reversed phase HPLC. The profile obtained clearly shows that three of them have a similar abundance. The molecular mass, 14193.8340Da for P9a(Cdt-PLA2), 14134.9102Da for P9b(Cdt-PLA2), 14242.6289Da for P10a(Cdt-PLA2) and 14183.8730Da for P10b(Cdt-PLA2), were initially evaluated by SDS-PAGE and confirmed by ESI-Q-TOF spectrometry, and all of them displayed a monomeric conformation. Also, partial amino acid sequence of each protein was obtained and their alignments with other crotalic PLA2 revealed a high degree of identity among them. Additionally, we studied some pharmacological activities like neurotoxicity, myotoxicity and lethality, which prompted us to pick two of them, P9a(Cdt-PLA2) and P10a(Cdt-PLA2) that resulted to be less toxic that the others, and further characterize them to be used as immunogen. We next injected these last proteins in mice to produce antitoxins against them and ELISA and dot blots reveled that both toxins do not show immunogenic differences, unlike those other pharmacologic activities tested. Furthermore, the antibodies produced cross-reacted with all the isoforms purified demonstrating the feasibility of using only one of them and ensuring the cross-reaction of all. The results obtained show that P9a(Cdt-PLA2) isoform has the lowest toxicity and also a good purification performance; thus this protein may be a promising candidate to be employed in the production of crotalic antitoxins.


Assuntos
Antivenenos/imunologia , Crotalus , Crotoxina/imunologia , Imunoglobulina G/imunologia , Fosfolipases A2/imunologia , Animais , Antivenenos/farmacologia , Galinhas , Cromatografia em Gel , Cromatografia de Fase Reversa , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/toxicidade , Crotoxina/antagonistas & inibidores , Crotoxina/toxicidade , Ensaio de Imunoadsorção Enzimática , Soros Imunes/imunologia , Immunoblotting , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/farmacologia , Isoenzimas , Dose Letal Mediana , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Fosfolipases A2/química , Fosfolipases A2/toxicidade
13.
J Biomol Tech ; 26(3): 90-102, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26207098

RESUMO

In this study, the aim was to determine the complete sequence of the Copaifera langsdorffii trypsin inhibitor (CTI)-1 using 2-dimensional (2D)-PAGE, matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), and quadrupole time-of-flight (QTOF) spectrometry. Spots A (CTI-1) and F (CTI-2) were submitted to enzymatic digestions with trypsin, SV8, and clostripain. The accurate mass of the peptide obtained from each digest was determined by mass spectrometry (MS) using MALDI-TOF. The most abundant peptides were purified and sequenced in a liquid chromatograph connected to an electrospray ionization-QTOF MS. When the purified trypsin inhibitor was submitted to 2D electrophoresis, different spots were observed, suggesting that the protein is composed of 2 subunits with microheterogeneity. Isoelectric points of 8.0, 8.5, and 9.0 were determined for the 11 kDa subunit and of 4.7, 4.6, and 4.3 for the 9 kDa subunit. The primary structure of CTI-1, determined from the mass of the peptide of the enzymatic digestions and the sequence obtained by MS, indicated 180 shared amino acid residues and a high degree of similarity with other Kunitz (KTI)-type inhibitors. The peptide also contained an Arg residue at the reactive site position. Its 3-dimensional structure revealed that this is because the structural discrepancies do not affect the canonical conformation of the reactive loop of the peptide. Results demonstrate that a detailed investigation of the structural particularities of CTI-1 could provide a better understanding of the mechanism of action of these proteins, as well as clarify its biologic function in the seeds. CTI-1 belongs to the KTI family and is composed of 2 polypeptide chains and only 1 disulfide bridge.


Assuntos
Fabaceae/química , Proteínas de Plantas/química , Sementes/química , Inibidores da Tripsina/química , Sequência de Aminoácidos , Cistina/química , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Mapeamento de Peptídeos , Isoformas de Proteínas/química , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Pestic Biochem Physiol ; 118: 1-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25752423

RESUMO

This paper describes the characterization of a trypsin inhibitor from Poincianella pyramidalis seeds (PpyTI). The partial sequencing of PpyTI revealed homology to Kunitz inhibitors, clustered as a member of Family I03 in MEROPS database. PpyTI has a single polypeptide chain of 19,042 Da and presents stability at high temperatures (up to 70 °C) and a wide range of pH. In vitro assays showed that disulfide bridges have an important stabilization role of reactive site in PpyTI, a characteristic shared among several Kunitz inhibitors. Bioassays carried out with the Mediterranean flour moth (Anagasta kuehniella) revealed a significant decrease in both larval weight and survival of PpyTI-fed larvae, besides a larval stage extension. Through biochemical analysis, we demonstrated that the PpyTI insecticide effects were triggered by digestion process commitment, through the inhibition of trypsin and chymotrypsin activities, the major digestive enzymes in this species. The insecticide effects and biochemical characterization of PpyTI encourage further studies using this inhibitor for insect pest control.


Assuntos
Fabaceae/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/farmacologia , Sequência de Aminoácidos , Animais , Digestão , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/fisiologia , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Inseticidas/química , Dados de Sequência Molecular , Mariposas/enzimologia , Extratos Vegetais/química , Alinhamento de Sequência , Inibidores da Tripsina/química
15.
Biochem Res Int ; 2015: 826059, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789175

RESUMO

A new PLA2 (Bp-13) was purified from Bothrops pauloensis snake venom after a single chromatographic step of RP-HPLC on µ-Bondapak C-18. Amino acid analysis showed a high content of hydrophobic and basic amino acids and 14 half-cysteine residues. The N-terminal sequence showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. Bp-13 showed allosteric enzymatic behavior and maximal activity at pH 8.1, 36°-45°C. Full Bp-13 PLA2 activity required Ca(2+); its PLA2 activity was inhibited by Mg(2+), Mn(2+), Sr(2+), and Cd(2+) in the presence and absence of 1 mM Ca(2+). In the mouse phrenic nerve-diaphragm (PND) preparation, the time for 50% paralysis was concentration-dependent (P < 0.05). Both the replacement of Ca(2+) by Sr(2+) and temperature lowering (24°C) inhibited the Bp-13 PLA2-induced twitch-tension blockade. Bp-13 PLA2 inhibited the contractile response to direct electrical stimulation in curarized mouse PND preparation corroborating its contracture effect. In biventer cervicis preparations, Bp-13 induced irreversible twitch-tension blockade and the KCl evoked contracture was partially, but significantly, inhibited (P > 0.05). The main effect of this new Asp49 PLA2 of Bothrops pauloensis venom is on muscle fiber sarcolemma, with avian preparation being less responsive than rodent preparation. The study enhances biochemical and pharmacological characterization of B. pauloensis venom.

16.
Toxicon ; 96: 46-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598498

RESUMO

A myographic study was performed to compare the neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis in mice phrenic-diaphragm preparation. It was concluded that both venoms present neurotoxic activity as a consequence of their crotoxin content. Furthermore, crotoxin from C.d. cumanensis is more potent than that from C.d. ruruima venom. At the concentration range in which both venoms express neurotoxic activity, only C.d. cumanensis venom also manifest a direct myotoxic effect that probably involves the synergic participation of other components than crotoxin.


Assuntos
Venenos de Crotalídeos/toxicidade , Crotalus/metabolismo , Crotoxina/toxicidade , Fármacos Neuromusculares/toxicidade , Animais , Diafragma/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Especificidade da Espécie
17.
Toxicon ; 96: 24-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25572337

RESUMO

The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations in vitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca(2+) solution, venom (3µg/ml) caused a quadriphasic response in PND twitch height whilst at 10µg/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca(2+), Bbil-TX [210nM (3µg/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10µg/ml) and Bbil-TX (210nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10µg/ml) and Bbil-TX (210nM) significantly reduced the perineural waveform associated with the outward K(+) current while the amplitude of the inward Na(+) current was not significantly affected. Bbil-TX (210nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca(2+) solution. Venom (3µg/ml) and toxin (210nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca(2+) solution. In normal Ca(2+), the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10µg/ml) caused an immediate increase in intracellular Ca(2+) followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K(+) channel activity and presynaptic protein expression.


Assuntos
Junção Neuromuscular/efeitos dos fármacos , Fosfolipases A2/toxicidade , Venenos de Víboras/toxicidade , Viperidae/metabolismo , Análise de Variância , Animais , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos
18.
Biochem Biophys Rep ; 1: 78-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-29124136

RESUMO

Phospholipases A2 (PLA2) are a group of enzymes that hydrolyze phospholipids at the sn-2 position, being present in all nature. In venomous animals, these proteins assume a special role, being able to exert diverse pharmacological effects. In this work, authors identified a new isoform of PLA2 in the venom of Porthidium hyoprora, which was isolated through sequential chromatographic steps and named PhTX-III. The enzyme was characterized biochemically and structurally. Structural studies using mass spectrometry confirmed an acidic secretory PLA2, family IIA, with molecular mass of 13,620.9 Da and identification of 86% of its primary sequence. PhTX-III did not exhibit myotoxic, anticoagulant or antibacterial effects, often present in this class of enzymes. Although, it was capable of initiate inflammatory response, with local edema and release of cytokines IL-1α, IL-6 and TNF-α, probably due to mast cell degranulation.

19.
Toxins (Basel) ; 6(11): 3077-97, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25365526

RESUMO

A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca²âº-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca²âº. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom.


Assuntos
Venenos de Crotalídeos/enzimologia , Modelos Animais de Doenças , Fosfolipases A2 do Grupo II/toxicidade , Músculo Esquelético/efeitos dos fármacos , Miosite/etiologia , Neurotoxinas/toxicidade , Mordeduras de Serpentes/fisiopatologia , Acetofenonas/uso terapêutico , Sequência de Aminoácidos , Animais , Quelantes de Cálcio/farmacologia , Domínio Catalítico , Galinhas , Sequência Conservada , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/toxicidade , Edema/etiologia , Edema/prevenção & controle , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/isolamento & purificação , Fosfolipases A2 do Grupo II/metabolismo , Técnicas In Vitro , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miosite/prevenção & controle , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/patologia , Viperidae
20.
Int J Environ Res Public Health ; 11(11): 11438-49, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25380458

RESUMO

Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.


Assuntos
Encéfalo/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Venenos de Crotalídeos/farmacologia , Crotalus , Animais , Contagem de Células Sanguíneas , Análise Química do Sangue , Região CA1 Hipocampal/imunologia , Venenos de Crotalídeos/administração & dosagem , Venenos de Crotalídeos/efeitos adversos , Infusões Intraventriculares , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...