Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3414, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701418

RESUMO

The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The π→π* transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe X-ray spectroscopic signatures of the initially hot excitonic state, indicating that it is delocalized over multiple polymer chains. This undergoes a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form either a localized exciton or polaron pair.

3.
Opt Express ; 28(16): 23329-23337, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752331

RESUMO

We have generated isolated attosecond pulses and performed attosecond streaking measurements using a two-colour synthesized laser field consisting of a strong near-infrared few-cycle pulse and a weaker multi-cycle pulse centred at 400 nm. An actively stabilized interferometer was used to coherently combine the two pulses. Using attosecond streaking we characterised the electric fields of the two pulses and accurately retrieved the spectrum of the multi-cycle pulse. We demonstrated a two-fold increase in the flux of isolated attosecond pulses produced and show that their duration was minimally affected by the presence of the weaker field due to spectral filtering by a multilayer mirror.

4.
Phys Chem Chem Phys ; 22(7): 3965-3974, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32022040

RESUMO

The photoelectron spectra of both liquid and gas phase aromatic molecules are reported. The spectra were obtained using a 34.1 eV source produced by high harmonic generation and analysed with the help of high-level ab initio simulations using the reflection principle combined with path integral molecular dynamics simulations accounting for nuclear quantum effects for the gas phase. We demonstrate the suitability of three trimethylbenzenes (1,3,5-trimethylbenzene, 1,2,3-trimethylbenzene and 1,2,4-trimethylbenzene) as a solvent for liquid photoelectron spectroscopy of solute species. We also discuss the electrokinetic charging of a non-polar liquid jet.

5.
Opt Express ; 27(7): 9394-9402, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045091

RESUMO

We analyze simulated streaked valence band photoemission with atomic streaking theory-based reconstruction methods to investigate the differences between atomic gas-phase streaking and valence band surface streaking. The careful distinction between atomic and surface streaking is a prerequisite to justify the application of atomic streaking theory-based reconstruction methods to surface streaking measurements. We show that neglecting the band structure underestimates the width of reconstructed photoelectron wavepackets, consistent with the Fourier transform limit of the band spectrum. We find that a fit of Gaussian wavepackets within the description of atomic streaking is adequate to a limited extent. Systematic errors that depend on the near-infrared skin depth, an inherently surface-specific property, are present in temporal widths of wavepackets reconstructed with atomic streaking theory-based methods.

6.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170481, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30929630

RESUMO

In this theme issue, leading researchers discuss recent work on the measurement of ultrafast electronic and structural dynamics in matter using a new generation of short duration X-ray photon sources. These photon sources, based upon high harmonic generation from lasers and X-ray free-electron lasers, look set to have a high impact on ultrafast science. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

7.
Opt Express ; 26(12): 15745-15758, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114831

RESUMO

We have studied high-order harmonic generation (HHG) in an indium ablation plume driven by intense few-cycle laser pulses centered at 775 nm as a function of the frequency chirp of the laser pulse. We found experimentally that resonant emission lines between 19.7 eV and 22.3 eV (close to the 13th and 15th harmonic of the laser) exhibit a strong, asymmetric chirp dependence, with pronounced intensity modulations. The chirp dependence is reproduced by our numerical time-dependent Schrödinger equation simulations of a resonant HHG by the model indium ion. As demonstrated with our separate simulations of HHG within the strong field approximation, the resonance can be understood in terms of the chirp-dependent HHG photon energy coinciding with the energy of an autoionizing state to ground state transition with high oscillator strength. This supports the validity of the general theory of resonant four-step HHG in the few-cycle limit.

8.
Sci Rep ; 8(1): 7536, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743528

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Sci Rep ; 8(1): 3789, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491420

RESUMO

Structural isomers, molecules having the same chemical formula but with atoms bonded in different order, are hard to identify using conventional spectroscopy and mass spectrometry. They exhibit virtually indistinguishable mass spectra when ionized by electrons. Laser mass spectrometry based on photoionization of the isomers has emerged as a promising alternative but requires shaped ultrafast laser pulses. Here we use transform limited femtosecond pulses to distinguish the isomers using two methods. First, we probe doubly charged parent ions with circularly polarized light. We show that the yield of doubly charged ortho-xylene decreases while para-xylene increases over a range of laser intensities when the laser polarization is changed from linear to circular. Second, we probe high harmonic generation from randomly oriented isomer molecules subjected to an intense laser field. We show that the yield of high-order harmonics varies with the positioning of the methyl group in xylene isomers (ortho-, para- and meta-) and is due to differences in the strength of tunnel ionization and the overlap between the angular peaks of ionization and photo-recombination.

10.
Nat Commun ; 8: 15461, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580940

RESUMO

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

11.
Opt Lett ; 42(4): 859-862, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198883

RESUMO

We demonstrate angle-resolved coherent (ARC) wave mixing using 4 fs light pulses derived from a laser source that spans 550-1000 nm. We believe this to be the shortest pulse duration used to date in coherent multi-dimensional spectroscopy. The marriage of this ultra-broad band, few-cycle coherent source with the ARC technique will permit new investigations of the interplay between energy transfers and quantum superposition states spanning 8200 cm-1. We applied this configuration to measurements on the photosynthetic low light (LL) complex from Rhodopseudomonas palustris in solution at ambient temperature. We observe bi-exponential population dynamics for energy transfer across 5500 cm-1 (0.65 eV), which we attribute to energy transfer from the Qx transition of bacteriochlorophylls to the B850 pigment of the complex. We believe for the first time, to the best of our knowledge, we demonstrate that ARC maps can be recorded using a single laser pulse.

12.
Rep Prog Phys ; 80(5): 054401, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28059773

RESUMO

Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond = 1 as = 10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.

13.
Struct Dyn ; 3(6): 062603, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27822487

RESUMO

We use a high harmonic generated supercontinuum in the soft X-ray region to measure X-ray absorption near edge structure (XANES) spectra in polythiophene (poly(3-hexylthiophene)) films at multiple absorption edges. A few-cycle carrier-envelope phase-stable laser pulse centered at 1800 nm was used to generate a stable soft X-ray supercontinuum, with amplitude gating limiting the generated pulse duration to a single optical half-cycle. We report a quantitative transmission measurement of the sulfur L2,3 edge over the range 160-200 eV and the carbon K edge from 280 to 330 eV. These spectra show all the features previously reported in the XANES spectra of polythiophene, but for the first time they are measured with a source that has an approximately 1 fs pulse duration. This study opens the door to measurements that can fully time-resolve the photoexcited electronic dynamics in these systems.

14.
Opt Lett ; 41(18): 4218-21, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628361

RESUMO

We report, to the best of our knowledge, the first application of time-domain ptychography for the characterization of few-cycle laser pulses. Our method enables zero-additional phase measurements of over-octave-spanning laser pulses in the single cycle regime. The spectral phase is recovered using a robust ptychography algorithm that requires no input apart from the measured data trace. In addition to numerical tests, we validate our new device experimentally by reconstructing the complex electric field of a 1.5 cycle laser pulse with a bandwidth spanning 490 to 1060 nm. We further check the accuracy of our device by comparing the measured phases of octave-spanning chirped pulses to the known dispersion of fused silica glass.

15.
Opt Lett ; 41(10): 2382-5, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27177008

RESUMO

We report on the characterization of space-time couplings in high-energy sub-2-cycle 770 nm laser pulses using a self-referencing single-frame method. Using spatially encoded arrangement filter-based spectral phase interferometry for direct electric field reconstruction, we characterize few-cycle pulses with a wavefront rotation of 2.8×1011 rev/s (1.38 mrad per half-cycle) and pulses with pulse front tilts ranging from -0.33 fs/µm to -3.03 fs/µm in the focus.

16.
Sci Rep ; 5: 10977, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077863

RESUMO

Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays.

17.
Rev Sci Instrum ; 85(10): 103117, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362381

RESUMO

We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10(-1) mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.


Assuntos
Espectroscopia Fotoeletrônica/instrumentação , Soluções/química , Raios Ultravioleta , Vácuo , Calibragem , Desenho de Equipamento , Fatores de Tempo
18.
Phys Rev Lett ; 111(26): 263601, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24483794

RESUMO

Complex revival features of rotational wave packets are obtained from the interplay of a molecular rotational distribution and a measured physical observable. The analysis of the measured temporal behavior can be used to retrieve either one or both quantities. We show here the first observation of high order fractional revival (up to 1/12 in CO2) using time-of-flight measurements of ion yields leading to the information required for full reconstruction of the rotational wave packet. We further show via an analysis of higher order fractional revivals in high harmonic generation that new information on the participating ionic channels can be clearly identified, showing the general implication of our results.

19.
Opt Express ; 20(27): 27974-80, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263031

RESUMO

We report on the spatially resolved full amplitude and phase characterization of mid-infrared high intensity laser pulses generated in a three stage OPA. We use a spatially-encoded arrangement (SEA-)SPIDER with spectral filters for ancilla generation for spatially resolved characterization. Using five interchangeable filter sets we are able to characterize pulses from 1 to 2 µm with one single device with minimal adjustments.


Assuntos
Interferometria/instrumentação , Lasers , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos
20.
Opt Express ; 20(23): 25239-48, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187340

RESUMO

We report studies of high-order harmonic generation in laser-produced manganese plasmas using sub-4-fs drive laser pulses. The measured spectra exhibit resonant enhancement of a small spectral region of about 2.5 eV width around the 31st harmonic (~50eV). The intensity contrast relative to the directly adjacent harmonics exceeds one order of magnitude. This finding is in sharp contrast to the results reported previously for multi-cycle laser pulses [Physical Review A 76, 023831 (2007)]. Theoretical modelling suggests that the enhanced harmonic emission forms an isolated sub-femtosecond pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...