Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(94): 13993-13996, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37938062

RESUMO

Tacticity is critical to polymer properties. The influence of solvent on tacticity in the catalytic synthesis of cyclic polynorbornene (c-PNB) is reported. In toluene cis,syndiotactic c-PNB forms; in THF, cis,syn/iso c-PNB forms.

2.
Adv Sci (Weinh) ; 10(29): e2303837, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37551064

RESUMO

n-Type organic electrochemical transistors (OECTs) and organic field-effect transistors (OFETs) are less developed than their p-type counterparts. Herein, polynaphthalenediimide (PNDI)-based copolymers bearing novel fluorinated selenophene-vinylene-selenophene (FSVS) units as efficient materials for both n-type OECTs and n-type OFETs are reported. The PNDI polymers with oligo(ethylene glycol) (EG7) side chains P(NDIEG7-FSVS), affords a high µC* of > 0.2 F cm-1  V-1  s-1 , outperforming the benchmark n-type Pg4NDI-T2 and Pg4NDI-gT2 by two orders of magnitude. The deep-lying LUMO of -4.63 eV endows P(NDIEG7-FSVS) with an ultra-low threshold voltage of 0.16 V. Moreover, the conjugated polymer with octyldodecyl (OD) side chains P(NDIOD-FSVS) exhibits a surprisingly low energetic disorder with an Urbach energy of 36 meV and an ultra-low activation energy of 39 meV, resulting in high electron mobility of up to 0.32 cm2  V-1  s-1 in n-type OFETs. These results demonstrate the great potential for simultaneously achieving a lower LUMO and a tighter intermolecular packing for the next-generation efficient n-type organic electronics.

3.
Macromolecules ; 55(22): 9908-9917, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36438594

RESUMO

A robust wavelength-dependent visible-light-regulated reversible-deactivation radical polymerization protocol is first reported for the batch preparation of >20 aggregation-induced emission (AIE)-active polyacrylates and polymethacrylates. The resulting polymers possess narrow molar mass distributions (D ≈ 1.09-1.25) and high end-group fidelity at high monomer conversions (mostly >95%). This demonstrated control provides facile access to the in situ generation of complex sequence-defined tetrablock copolymers in one reactor, even while chain extending from less reactive monomers. Polymerizations can be successfully carried out under various irradiation conditions, including using UV, blue, green, and red LED light with more disperse polymers obtained at the longer, less energetic, wavelengths. We observe a red shift and wavelength dependence for the most efficient polymerization using LED illumination in a polymerization reaction. We find that the absorption of the copper(II) complex is not a reliable guide to reaction conditions. Moreover, the reported protocol is readily translated to a flow setup. The prepared AIE-active polymers are demonstrated to exhibit good photopatterning, making them promising materials for applications in advanced optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...