Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 194(12): 5808-5826, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35819689

RESUMO

Mungbean is an important legume mainly cultivated in Southeast Asia known for cheap source of food protein. Yellow mosaic disease (YMD) of mungbean is one of the most damaging diseases caused by mungbean yellow mosaic virus (MYMV) and mungbean yellow mosaic India virus (MYMIV) in India. The genetic basis of YMD resistance of mungbean is not well studied yet. Our present studies aimed to explore the genetic basis of YMD resistance through molecular, biochemical and metabolomics approach. Molecular analysis of YMV-infected mungbean plant materials revealed the presence of MYMIV. Chlorophyll contents were estimated as mosaic symptoms that cause chlorosis and necrosis in infected leaves. Chlorophyll a, b and total chlorophyll content were significantly reduced by 27-55% in infected samples compared non-infected control samples. 1H NMR-based metabolomic profiling of virus-infected mungbean were carried out, and we found that vital changes occurred during the development of MYMIV infection in mungbean. A total of fifty metabolites were identified in mungbean leaf samples. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) separated the severely infected sample from the non-infected samples. Orthogonal partial least discrimination analysis (OPLS-DA) revealed significant differences in MYMIV-infected and non-infected control samples. The featured metabolites in MYMIV infected and control samples were amino acids, carbohydrates, and organic acids. Relative abundance of sucrose, γ-amino butyric acid (GABA), proline, alanine, phenylalanine, tryptophan, pyruvate, ascorbate, and citrates were found as differential metabolites. Our results suggest that metabolic changes in infected mungbean samples is related to the viral acquisition. The present study may help in better understanding the metabolic alterations during biotic stress in mungbean.


Assuntos
Fabaceae , Vigna , Clorofila A , Doenças das Plantas/genética , Resistência à Doença
2.
J Biomol Struct Dyn ; 40(15): 6857-6867, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33625319

RESUMO

Human epidermal growth factor receptor2 (HER2) and Vascular endothelial growth factor receptor2 (VEGFR2) - a tyrosine kinase receptors play a key role in breast and stomach cancers. The overexpression of HER2 and VEGFR2 genes increases the number of HER2 and VEGFR2 in the cell which initiates breast and stomach cancer respectively. The phytochemicals from traditional medicinal herb Houttuynia cordata Thunb. are reported to possess anti-inflammatory and anti-cancer potential. However, isolation of phytochemicals from this herb is fraught with uncertainly and time-consuming. Here, a molecular docking approach provides probable binding affinities between the receptors and phytochemicals (ligands) which initiate the first step of anticancer drug discovery and development. In the present study, In-silico docking approaches were used to identify the top-hit phytochemicals from H. cordata as potential inhibitors for overexpressed HER2 (breast) and VEGFR2 (stomach) cancer genes. A total of 100 biologically active phytochemicals from H. cordata were screened and docked against the ligand-binding pocket of HER2 and VEGFR2 kinase domains. Docking results revealed only a few phytochemicals (molecules) which appropriately fit into the ligand-binding pocket with higher binding affinity than the natural ATP ligand. A competitive docking was used to ascertain the top-hit phytochemicals that bind perfectly to the ATP ligand-binding pocket. Among the top-hit phytochemicals docked from H. cordata, the ß-sitosterol and Quercetin showed highest binding affinity towards HER2 and VEGFR2 receptors using both hydrogen and hydrophobic interactions. This study confirmed ß-sitosterol and Quercetin as potential drug candidates against breast and stomach cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Houttuynia , Neoplasias Gástricas , Trifosfato de Adenosina , Genes Neoplásicos , Houttuynia/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Quercetina , Receptor ErbB-2 , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
3.
Biotechnol Biofuels ; 9: 226, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790288

RESUMO

BACKGROUND: Jatropha curcas is an important biofuel crop due to the presence of high amount of oil in its seeds suitable for biodiesel production. Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. Diacylglycerol O-acyltransferase (DGAT1) enzyme is responsible for the last and only committed step in seed TAG biosynthesis. Direct upregulation of TAG biosynthesis in seeds and vegetative tissues through overexpression of the DGAT1 could enhance the energy density of the biomass, making significant impact on biofuel production. RESULTS: The enzyme diacylglycerol O-acyltransferase is the rate-limiting enzyme responsible for the TAG biosynthesis in seeds. We generated transgenic Jatropha ectopically expressing an Arabidopsis DGAT1 gene through Agrobacterium-mediated transformation. The resulting AtDGAT1 transgenic plants showed a dramatic increase in lipid content by 1.5- to 2 fold in leaves and 20-30 % in seeds, and an overall increase in TAG and DAG, and lower free fatty acid (FFA) levels compared to the wild-type plants. The increase in oil content in transgenic plants is accompanied with increase in average plant height, seeds per tree, average 100-seed weight, and seed length and breadth. The enhanced TAG accumulation in transgenic plants had no penalty on the growth rates, growth patterns, leaf number, and leaf size of plants. CONCLUSIONS: In this study, we produced transgenic Jatropha ectopically expressing AtDGAT1. We successfully increased the oil content by 20-30 % in seeds and 1.5- to 2.0-fold in leaves of Jatropha through genetic engineering. Transgenic plants had reduced FFA content compared with control plants. Our strategy of increasing energy density by enhancing oil accumulation in both seeds and leaves in Jatropha would make it economically more sustainable for biofuel production.

4.
Methods Mol Biol ; 1224: 25-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25416246

RESUMO

The seed oil of Jatropha (Jatropha curcas L.) as a source of biodiesel fuel is gaining worldwide importance. Commercial-scale exploration of Jatropha has not succeeded due to low and unstable seed yield in semiarid lands unsuitable for the food production and infestation to diseases. Genetic engineering is promising to improve various agronomic traits in Jatropha and to understand the molecular functions of key Jatropha genes for molecular breeding. We describe a protocol routinely followed in our laboratory for stable and efficient Agrobacterium tumefaciens-mediated transformation of Jatropha using cotyledonary leaf as explants. The 4-day-old explants are infected with Agrobacterium tumefaciens strain EHA105 harboring pBI121 plant binary vector, which contains nptII as plant selectable marker and gus as reporter. The putative transformed plants are selected on kanamycin, and stable integration of transgene(s) is confirmed by histochemical GUS assay, polymerase chain reaction, and Southern hybridization.


Assuntos
Engenharia Genética/métodos , Jatropha/crescimento & desenvolvimento , Jatropha/genética , Aclimatação , Agrobacterium tumefaciens/genética , Cotilédone/citologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Técnicas de Cultura , Jatropha/efeitos dos fármacos , Jatropha/fisiologia , Canamicina/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...