Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Lab Chip ; 24(9): 2575-2589, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38646820

RESUMO

Leukocyte count is routinely performed for diagnostic purposes and is rapidly emerging as a significant biomarker for a wide array of diseases. Additionally, leukocytes have demonstrated considerable promise in novel cell-based immunotherapies. However, the direct retrieval of leukocytes from whole blood is a significant challenge due to their low abundance compared to erythrocytes. Here, we introduce a microfluidic-based platform that isolates and recovers leukocytes from diluted whole blood in a single step. Our platform utilizes a novel, sheathless method to initially sediment and focus blood cells into a dense stream while flowing through a tubing before entering the microfluidic device. A hexagonal-shaped structure, patterned at the device's inlet, directs all the blood cells against the channel's outer walls. The focused cells are then separated based on their size using the deterministic lateral displacement (DLD) microfluidic technique. We evaluated various parameters that could influence leukocyte separation, including different focusing structures (assessed both computationally and experimentally), the orientation of the tubing-chip interface, the effects of blood sample hematocrit (dilution), and flow rate. Our device demonstrated the ability to isolate leukocytes from diluted blood with a separation efficiency of 100%, a recovery rate of 76%, and a purity of 80%, while maintaining a cell viability of 98%. The device operates for over 30 min at a flow rate of 2 µL min-1. Furthermore, we developed a handheld pressure controller to drive fluid flow, enhancing the operability of our platform outside of central laboratories and enabling near-patient testing. Our platform can be integrated with downstream cell-based assays and analytical methods that require high leukocyte purity (80%), ranging from cell counting to diagnostics and cell culture applications.


Assuntos
Separação Celular , Leucócitos , Técnicas Analíticas Microfluídicas , Leucócitos/citologia , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Separação Celular/instrumentação , Desenho de Equipamento , Dispositivos Lab-On-A-Chip
2.
J Leukoc Biol ; 116(1): 84-94, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554062

RESUMO

Idiopathic inflammatory myopathies are a heterogeneous group of rare autoimmune disorders characterized by progressive muscle weakness and the histopathologic findings of inflammatory infiltrates in muscle tissue. Although their pathogenesis remains indefinite, the association of autoantibodies with clinical manifestations and the evidence of high effectiveness of depleting therapies suggest that B cells could be implicated. Therefore, we explored the landscape of peripheral B cells in this disease by multiparametric flow cytometry, finding significant numerical decreases in memory and double-negative subsets, as well as an expansion of the naive compartment relative to healthy controls, that contribute to defining disease-associated B-cell subset signatures and correlating with different clinical features of patients. Additionally, we determined the potential value of these subsets as diagnostic biomarkers, thus positioning B cells as neglected key elements possibly participating in idiopathic inflammatory myopathy onset or development.


Assuntos
Subpopulações de Linfócitos B , Biomarcadores , Miosite , Humanos , Miosite/imunologia , Miosite/patologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Citometria de Fluxo
3.
Front Immunol ; 14: 1080154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911711

RESUMO

Introduction: Immunoglobulin A (IgA) is the main antibody isotype in body fluids such as tears, intestinal mucous, colostrum, and saliva. There are two subtypes of IgA in humans: IgA1, mainly present in blood and mucosal sites, and IgA2, preferentially expressed in mucosal sites like the colon. In clinical practice, immunoglobulins are typically measured in venous or capillary blood; however, alternative samples, including saliva, are now being considered, given their non-invasive and easy collection nature. Several autoimmune diseases have been related to diverse abnormalities in oral mucosal immunity, such as rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus (SLE). Methods: We decided to evaluate the levels of both IgA subtypes in the saliva of SLE patients. A light chain capture-based ELISA measured specific IgA1 and IgA2 levels in a cohort of SLE patients compared with age and gender-matched healthy volunteers. Results: Surprisingly, our results indicated that in the saliva of SLE patients, total IgA and IgA1 subtype were significantly elevated; we also found that salivary IgA levels, particularly IgA2, positively correlate with anti-dsDNA IgG antibody titers. Strikingly, we also detected the presence of salivary anti-nucleosome IgA antibodies in SLE patients, a feature not previously reported elsewhere. Conclusions: According to our results and upon necessary validation, IgA characterization in saliva could represent a potentially helpful tool in the clinical care of SLE patients with the advantage of being a more straightforward, faster, and safer method than manipulating blood samples.


Assuntos
Imunoglobulina A Secretora , Lúpus Eritematoso Sistêmico , Humanos , Imunoglobulina A , Imunoglobulina G , Mucosa Bucal , Biomarcadores
4.
ACS Sens ; 8(2): 655-664, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36710459

RESUMO

The profiling of the effector functions of single immune cells─including cytokine secretion─can lead to a deeper understanding of how the immune system operates and to potential diagnostics and therapeutical applications. Here, we report a microfluidic device that pairs single cells and antibody-functionalized microbeads in hydrodynamic traps to quantitate cytokine secretion. The device contains 1008 microchambers, each with a volume of ∼500 pL, divided into six different sections individually addressed to deliver an equal number of chemical stimuli. Integrating microvalves allowed us to isolate cell/bead pairs, preventing cross-contamination with factors secreted by adjacent cells. We implemented a fluorescence sandwich immunoassay on the biosensing microbeads with a limit of detection of 9 pg/mL and were able to detect interleukin-8 (IL-8) secreted by single blood-derived human monocytes in response to different concentrations of LPS. Finally, our platform allowed us to observe a significant decrease in the number of IL-8-secreting monocytes when paracrine signaling becomes disrupted. Overall, our platform could have a variety of applications for which the analysis of cellular function heterogeneity is necessary, such as cancer research, antibody discovery, or rare cell screening.


Assuntos
Técnicas Biossensoriais , Interleucina-8 , Humanos , Microesferas , Citocinas , Anticorpos
5.
Rev Invest Clin ; 74(5): 227-231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327996

RESUMO

Abstract: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease with a wide range of clinical presentations. Lupus nephritis (LN) is a frequent complication of SLE, representing a significant cause of morbidity and mortality in these patients. In addition, LN diagnosis remains suboptimal in most clinical contexts. The current gold standard for LN clinical diagnosis is a renal biopsy. Still, the invasiveness of this technique is an obstacle to the early detection of renal involvement and further monitoring of treatment results. Consequently, there are different areas for improvement in the field of LN, such as the search for novel non-invasive clinical biomarkers with an adequate correlation between clinical manifestations and actual histological damage. Although urine component-related studies are promising, the more robust blood/serum biomarkers may still be helpful in developing point-of-care systems that can be adapted to most clinical scenarios. Therefore, this brief review aims to highlight and summarize some of the most recently reported non-classical serum/blood potential LN biomarkers. (Rev Invest Clin. 2022;74(5):227-31).


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/patologia , Biomarcadores , Resultado do Tratamento
6.
Rev. invest. clín ; 74(5): 227-231, Sep.-Oct. 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1409586

RESUMO

ABSTRACT Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease with a wide range of clinical presentations. Lupus nephritis (LN) is a frequent complication of SLE, representing a significant cause of morbidity and mortality in these patients. In addition, LN diagnosis remains suboptimal in most clinical contexts. The current gold standard for LN clinical diagnosis is a renal biopsy. Still, the invasiveness of this technique is an obstacle to the early detection of renal involvement and further monitoring of treatment results. Consequently, there are different areas for improvement in the field of LN, such as the search for novel non-invasive clinical biomarkers with an adequate correlation between clinical manifestations and actual histological damage. Although urine component-related studies are promising, the more robust blood/serum biomarkers may still be helpful in developing point-of-care systems that can be adapted to most clinical scenarios. Therefore, this brief review aims to highlight and summarize some of the most recently reported non-classical serum/blood potential LN biomarkers.

7.
PLoS One ; 17(9): e0274910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126080

RESUMO

It is well known that the presence of comorbidities and age-related health issues may hide biochemical and metabolic features triggered by SARS-CoV-2 infection and other diseases associated to hypoxia, as they are by themselves chronic inflammatory conditions that may potentially disturb metabolic homeostasis and thereby negatively impact on COVID-19 progression. To unveil the metabolic abnormalities inherent to hypoxemia caused by COVID-19, we here applied gas chromatography coupled to mass spectrometry to analyze the main metabolic changes exhibited by a population of male patients less than 50 years of age with mild/moderate and severe COVID-19 without pre-existing comorbidities known to predispose to life-threatening complications from this infection. Several differences in serum levels of particular metabolites between normal controls and patients with COVID-19 as well as between mild/moderate and severe COVID-19 were identified. These included increased glutamic acid and reduced glutamine, cystine, threonic acid, and proline levels. In particular, using the entire metabolomic fingerprint obtained, we observed that glutamine/glutamate metabolism was associated with disease severity as patients in the severe COVID-19 group presented the lowest and higher serum levels of these amino acids, respectively. These data highlight the hypoxia-derived metabolic alterations provoked by SARS-CoV-2 infection in the absence of pre-existing co-morbidities as well as the value of amino acid metabolism in determining reactive oxygen species recycling pathways, which when impaired may lead to increased oxidation of proteins and cell damage. They also provide insights on new supportive therapies for COVID-19 and other disorders that involve altered redox homeostasis and lower oxygen levels that may lead to better outcomes of disease severity.


Assuntos
COVID-19 , Ácido Glutâmico , Aminoácidos/metabolismo , Cistina/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Homeostase , Humanos , Hipóxia , Masculino , Oxirredução , Oxigênio , Prolina/metabolismo , Espécies Reativas de Oxigênio , SARS-CoV-2
8.
Front Immunol ; 13: 892241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663936

RESUMO

Lupus nephritis (LN) is one of the most common manifestations of systemic lupus erythematosus (SLE), characterized by abnormal B cell activation and differentiation to memory or plasma effector cells. However, the role of these cells in the pathogenesis of LN is not fully understood, as well as the effect of induction therapy on B cell subsets, possibly associated with this manifestation, like aged-associated B cells (ABCs). Consequently, we analyzed the molecules defining the ABCs subpopulation (CD11c, T-bet, and CD21) through flow cytometry of blood samples from patients with lupus presenting or not LN, following up a small sub-cohort after six months of induction therapy. The frequency of ABCs resulted higher in LN patients compared to healthy subjects. Unexpectedly, we identified a robust reduction of a CD21hi subset that was almost specific to LN patients. Moreover, several clinical and laboratory lupus features showed strong and significant correlations with this undefined B cell subpopulation. Finally, it was observed that the induction therapy affected not only the frequencies of ABCs and CD21hi subsets but also the phenotype of the CD21hi subset that expressed a higher density of CXCR5. Collectively, our results suggest that ABCs, and more importantly the CD21hi subset, may work to assess therapeutic response since the reduced frequency of CD21hi cells could be associated with the onset of LN.


Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Insuficiência Renal , Idoso , Biomarcadores , Antígeno CD11c , Proteínas do Sistema Complemento/uso terapêutico , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nefrite Lúpica/diagnóstico
9.
J Leukoc Biol ; 112(2): 333-337, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35199888

RESUMO

The contribution of B cells in COVID-19 pathogenesis, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Since one of their most relevant functional roles includes their immune-suppressive mechanisms, we decided to evaluate one of the most recognized human B regulatory subpopulations: the IL-10+ B10 cells, during COVID-19 onset. After stimulation of PBMCs for IL-10 induction, we employed multiparametric flow cytometry to determine B10 frequencies in severe and critical COVID-19 patients and then correlated those with clinical and laboratory parameters. Compared with healthy individuals, we detected a significant reduction in the B10 subset in both patient groups, which correlates with some inflammatory parameters that define the disease severity. This evidence suggests an aberrant role of B10 cells in immune responses against SARS-CoV-2 that needs to be further explained.


Assuntos
Linfócitos B Reguladores , COVID-19 , Citometria de Fluxo , Humanos , Interleucina-10 , SARS-CoV-2
10.
Inflamm Res ; 71(1): 131-140, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34850243

RESUMO

OBJECTIVES: The role of B cells in COVID-19, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Here, we describe the novel landscape of circulating double-negative (DN) CD27- IgD- B cells in COVID-19 patients, representing a group of atypical and neglected subpopulations of this cell lineage. METHODS: Using multiparametric flow cytometry, we determined DN B cell subset amounts from 91 COVID-19 patients, correlated those with cytokines, clinical and laboratory parameters, and segregated them by principal components analysis. RESULTS: We detected significant increments in the DN2 and DN3 B cell subsets, while we found a relevant decrease in the DN1 B cell subpopulation, according to disease severity and patient outcomes. These DN cell numbers also appeared to correlate with pro- or anti-inflammatory signatures, respectively, and contributed to the segregation of the patients into disease severity groups. CONCLUSION: This study provides insights into DN B cell subsets' potential role in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Imunoglobulina D/sangue , SARS-CoV-2 , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/citologia , COVID-19/diagnóstico , COVID-19/virologia , Linhagem da Célula , Biologia Computacional , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Prognóstico , Respiração Artificial , Índice de Gravidade de Doença , Adulto Jovem
11.
Eur J Immunol ; 52(1): 62-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34693521

RESUMO

NK cells play an important role in immunity by recognizing and eliminating cells undergoing infection or malignant transformation. This role is dependent on the ability of NK cells to lyse targets cells in a perforin-dependent mechanism and by secreting inflammatory cytokines. Both effector functions are controlled by several cell surface receptors. The Signaling Lymphocyte Activation Molecule (SLAM) family of receptors plays an essential role in regulating NK cell activation. Several studies have demonstrated that SLAMF7 regulates NK cell activation. However, the molecular and cellular mechanisms by which SLAMF7 influences NK effector functions are unknown. Here, we present evidence that physiological ligation of SLAMF7 in human NK cells enhances the lysis of target cells expressing SLAMF7. This effect was dependent on the ability of SLAMF7 to promote NK cell degranulation rather than cytotoxic granule polarization or cell adhesion. Moreover, SLAMF7-dependent NK cell degranulation was predominantly dependent on PLC-γ when compared to PI3K. These data provide novel information on the cellular mechanism by which SLAMF7 regulates human NK cell activation. Finally, this study supports a model for NK cell activation where activated receptors contribute by regulating specific discrete cellular events rather than multiple cellular processes.


Assuntos
Degranulação Celular/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Linhagem Celular , Humanos
12.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679506

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has reached an unprecedented level. There is a strong demand for diagnostic and serological supplies worldwide, making it necessary for countries to establish their own technologies to produce high-quality biomolecules. The two main viral antigens used for the diagnostics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) are the structural proteins spike (S) protein and nucleocapsid (N) protein. The spike protein of SARS-CoV-2 is cleaved into S1 and S2, in which the S1 subunit has the receptor-binding domain (RBD), which induces the production of neutralizing antibodies, whereas nucleocapsid is an ideal target for viral antigen-based detection. In this study, we designed plasmids, pcDNA3.1/S1 and pcDNA3.1/N, and optimized their expression of the recombinant S1 and N proteins from SARS-CoV-2 in a mammalian system. The RBD was used as a control. The antigens were successfully purified from Expi293 cells, with high yields of the S1, N, and RBD proteins. The immunogenic abilities of these proteins were demonstrated in a mouse model. Further, enzyme-linked immunosorbent assays with human serum samples showed that the SARS-CoV-2 antigens are a suitable alternative for serological assays to identify patients infected with COVID-19.

13.
J Leukoc Biol ; 110(3): 425-431, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34057753

RESUMO

The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.


Assuntos
COVID-19/diagnóstico , Carboxipeptidases A/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/diagnóstico , Mastócitos/imunologia , SARS-CoV-2/isolamento & purificação , Serotonina/metabolismo , Biomarcadores/análise , COVID-19/complicações , COVID-19/metabolismo , COVID-19/virologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mastócitos/patologia , Índice de Gravidade de Doença
14.
Sci Rep ; 11(1): 6350, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737694

RESUMO

We identified the main changes in serum metabolites associated with severe (n = 46) and mild (n = 19) COVID-19 patients by gas chromatography coupled to mass spectrometry. The modified metabolic profiles were associated to an altered amino acid catabolism in hypoxic conditions. Noteworthy, three α-hydroxyl acids of amino acid origin increased with disease severity and correlated with altered oxygen saturation levels and clinical markers of lung damage. We hypothesize that the enzymatic conversion of α-keto-acids to α- hydroxyl-acids helps to maintain NAD recycling in patients with altered oxygen levels, highlighting the potential relevance of amino acid supplementation during SARS-CoV-2 infection.


Assuntos
Aminoácidos/metabolismo , COVID-19/metabolismo , Oxigênio/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Homeostase , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Mitocôndrias/metabolismo
15.
Biochem Biophys Res Commun ; 552: 23-29, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740661

RESUMO

Pancreatic cancer remains one of the most lethal diseases with dismal five-year survival rates. Although mutant KRas protein-driven activation of downstream MAPK Raf/MEK/ERK and PI3K/Akt signaling pathways represent major oncogenic alterations, signaling blockade with MEK and PI3K inhibitors has shown that intrinsic resistance may hamper the effectiveness of this targeted approach. However, there have been no mass spectrometry-based proteomic studies for in-depth comparison of protein expression differences between pancreatic cancer cells with sensitivity and resistance to MEK and PI3K kinase inhibitors. In this work, we compared PANC-1 and MIA PaCa-2 pancreatic cancer cells which are, respectively, resistant and sensitive to MEK- and PI3K-targeted therapy. We conducted a label-free data-independent acquisition mass spectrometry (SWATH-MS) study with extensive peptide fractionation to quantitate 4808 proteins and analyze differential expression of 743 proteins between resistant and sensitive cells. This allowed identification of the tumor suppressor protein phosphatase 2A (PP2A) and proteins from mitochondrial respiratory complex I implicated in oxidative phosphorylation as alternative candidate drug targets for cells resistant to MEK and PI3K inhibition. PP2A activator DT-061 decreased viability of PANC-1 cells and this was accompanied by reduced expression of c-Myc. PANC-1 cells also showed response to metformin and the novel complex I inhibitor IACS-010759. These findings provide insights into the distinct cellular proteomes and point out alternative pharmacological targets for MEK and PI3K inhibition-resistant pancreatic cancer cells.


Assuntos
Espectrometria de Massas/métodos , Neoplasias Pancreáticas/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oxidiazóis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Proteoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
16.
Front Immunol ; 11: 611004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343585

RESUMO

Background: SARS-CoV-2 infection represents a global health problem that has affected millions of people. The fine host immune response and its association with the disease course have not yet been fully elucidated. Consequently, we analyze circulating B cell subsets and their possible relationship with COVID-19 features and severity. Methods: Using a multiparametric flow cytometric approach, we determined B cell subsets frequencies from 52 COVID-19 patients, grouped them by hierarchical cluster analysis, and correlated their values with clinical data. Results: The frequency of CD19+ B cells is increased in severe COVID-19 compared to mild cases. Specific subset frequencies such as transitional B cell subsets increase in mild/moderate cases but decrease with the severity of the disease. Memory B compartment decreased in severe and critical cases, and antibody-secreting cells are increased according to the severity of the disease. Other non-typical subsets such as double-negative B cells also showed significant changes according to disease severity. Globally, these differences allow us to identify severity-associated patient clusters with specific altered subsets. Finally, respiratory parameters, biomarkers of inflammation, and clinical scores exhibited correlations with some of these subpopulations. Conclusions: The severity of COVID-19 is accompanied by changes in the B cell subpopulations, either immature or terminally differentiated. Furthermore, the existing relationship of B cell subset frequencies with clinical and laboratory parameters suggest that these lymphocytes could serve as potential biomarkers and even active participants in the adaptive antiviral response mounted against SARS-CoV-2.


Assuntos
Subpopulações de Linfócitos B , COVID-19 , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , COVID-19/sangue , COVID-19/imunologia , COVID-19/patologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença
17.
FEBS J ; 287(16): 3449-3471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958362

RESUMO

B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.


Assuntos
Linfócitos B/metabolismo , Membrana Celular/metabolismo , Movimento Celular/genética , Endocitose/genética , Tetraspaninas/genética , Linfócitos B/ultraestrutura , Sistemas CRISPR-Cas , Adesão Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Microscopia Eletrônica , Fagocitose/genética , Estresse Mecânico , Tetraspaninas/metabolismo
18.
Rev Invest Clin ; 71(2): 85-90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31056611

RESUMO

Surface plasmon resonance (SPR)-based biosensors offer superior analytical features such as simplicity, sensitivity, and specificity when compared to conventional methods in clinical analyses. In addition, they deliver real-time monitoring of label-free analytes with high-throughput approaches requiring little sample pretreatment that allows the analysis of virtually every clinical sample type to determine the amount and/or activity of any molecule of interest. Accordingly, SPR emerges as a novel, efficient, powerful, and relatively low-cost alternative tool for routine clinical analysis, opening also new horizons for developments in personalized medicine applied to diagnostics or therapeutics' monitoring.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios de Triagem em Larga Escala/métodos , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento , Humanos , Sensibilidade e Especificidade
19.
Rev. invest. clín ; 71(2): 85-90, Mar.-Apr. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1289673

RESUMO

Abstract Surface plasmon resonance (SPR)-based biosensors offer superior analytical features such as simplicity, sensitivity, and specificity when compared to conventional methods in clinical analyses. In addition, they deliver real-time monitoring of label-free analytes with high-throughput approaches requiring little sample pretreatment that allows the analysis of virtually every clinical sample type to determine the amount and/or activity of any molecule of interest. Accordingly, SPR emerges as a novel, efficient, powerful, and relatively low-cost alternative tool for routine clinical analysis, opening also new horizons for developments in personalized medicine applied to diagnostics or therapeutics’ monitoring.


Assuntos
Humanos , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Ensaios de Triagem em Larga Escala/métodos , Sensibilidade e Especificidade , Desenho de Equipamento
20.
J Leukoc Biol ; 105(5): 843-856, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30457676

RESUMO

B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.


Assuntos
Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Citocinas/imunologia , Imunidade Celular , Imunidade Humoral , Imunidade Inata , Animais , Anticorpos/genética , Antígenos CD/genética , Antígenos CD/imunologia , Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/citologia , Comunicação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Citocinas/genética , Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA