Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180(15): 1999-2017, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36872299

RESUMO

BACKGROUND AND PURPOSE: Therapies based on apolipoprotein A-I (ApoA-I), classically tested for cardiovascular diseases, were recently proposed for Alzheimer's disease (AD). Based on a drug reprofiling approach, our objective was to explore the use of a natural variant of ApoA-I form, ApoA-I-Milano (M), as a treatment for AD. ApoA-I-M contains the R173C mutation, and confers protection against atherosclerosis development, although ApoA-I-M carriers exhibit low HDL levels. EXPERIMENTAL APPROACH: Middle-aged (12-month-old) and aged (21-month-old) APP23 mice were intraperitoneally treated for 10 weeks with human recombinant ApoA-I-M (hrApoA-I-M) protein or saline. Pathology progression through behavioural parameters and biochemical determinations was evaluated. KEY RESULTS: In middle-aged group, hrApoA-I-M treatment reduced the anxiety behaviour associated with this AD model. In aged mice, hrApoA-I-M reversed T-Maze performance alterations, a cognitive improvement accompanied by neuronal loss recovery in the dentate gyrus. Aged mice treated with hrApoA-I-M showed lower brain Aß40 soluble levels and elevated Aß40 levels in cerebrospinal fluid, without modifying insoluble brain Aß burden. Interestingly, hrApoA-I-M sub-chronic treatment induced a molecular effect on the cerebrovasculature, increasing occludin expression and ICAM-1 presence, as well as promoting an elevation of plasma soluble RAGE in all hrApoA-I-M-treated mice, drastically decreasing the AGEs/sRAGE ratio, a marker of endothelial damage. CONCLUSION AND IMPLICATIONS: Peripheral hrApoA-I-M treatment shows a beneficial impact on working memory, involving mechanisms related with brain Aß mobilization and modulation of the levels of cerebrovascular markers. Our study shows the potential therapeutic applicability of a safe and non-invasive treatment based on peripheral administration of hrApoA-I-M in AD.


Assuntos
Doença de Alzheimer , Pessoa de Meia-Idade , Camundongos , Humanos , Animais , Lactente , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Apolipoproteína A-I/genética , Encéfalo/metabolismo , Mutação , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563362

RESUMO

The pathological accumulation of parenchymal and vascular amyloid-beta (Aß) are the main hallmarks of Alzheimer's disease (AD) and Cerebral Amyloid Angiopathy (CAA), respectively. Emerging evidence raises an important contribution of vascular dysfunction in AD pathology that could partially explain the failure of anti-Aß therapies in this field. Transgenic mice models of cerebral ß-amyloidosis are essential to a better understanding of the mechanisms underlying amyloid accumulation in the cerebrovasculature and its interactions with neuritic plaque deposition. Here, our main objective was to evaluate the progression of both parenchymal and vascular deposition in APP23 and 5xFAD transgenic mice in relation to age and sex. We first showed a significant age-dependent accumulation of extracellular Aß deposits in both transgenic models, with a greater increase in APP23 females. We confirmed that CAA pathology was more prominent in the APP23 mice, demonstrating a higher progression of Aß-positive vessels with age, but not linked to sex, and detecting a pronounced burden of cerebral microbleeds (cMBs) by magnetic resonance imaging (MRI). In contrast, 5xFAD mice did not present CAA, as shown by the negligible Aß presence in cerebral vessels and the occurrence of occasional cMBs comparable to WT mice. In conclusion, the APP23 mouse model is an interesting tool to study the overlap between vascular and parenchymal Aß deposition and to evaluate future disease-modifying therapy before its translation to the clinic.


Assuntos
Doença de Alzheimer , Amiloidose , Angiopatia Amiloide Cerebral , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/patologia , Animais , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia
3.
Brain Pathol ; 32(1): e13016, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514662

RESUMO

Genome-wide association studies have described several genes as genetic susceptibility loci for Alzheimer's disease (AD). Among them, CD2AP encodes CD2-associated protein, a scaffold protein implicated in dynamic actin remodeling and membrane trafficking during endocytosis and cytokinesis. Although a clear link between CD2AP defects and glomerular pathology has been described, little is known about the function of CD2AP in the brain. The aim of this study was to analyze the distribution of CD2AP in the AD brain and its potential associations with tau aggregation and ß-amyloid (Aß) deposition. First, we performed immunohistochemical analysis of CD2AP expression in brain tissue from AD patients and controls (N = 60). Our results showed granular CD2AP immunoreactivity in the human brain endothelium in all samples. In AD cases, no CD2AP was found to be associated with Aß deposits in vessels or parenchymal plaques. CD2AP neuronal inclusions similar to neurofibrillary tangles (NFT) and neuropil thread-like deposits were found only in AD samples. Moreover, immunofluorescence analysis revealed that CD2AP colocalized with pTau. Regarding CD2AP neuronal distribution, a hierarchical progression from the entorhinal to the temporal and occipital cortex was detected. We found that CD2AP immunodetection in neurons was strongly and positively associated with Braak neurofibrillary stage, independent of age and other pathological hallmarks. To further investigate the association between pTau and CD2AP, we included samples from cases of primary tauopathies (corticobasal degeneration [CBD], progressive supranuclear palsy [PSP], and Pick's disease [PiD]) in our study. Among these cases, CD2AP positivity was only found in PiD samples as neurofibrillary tangle-like and Pick body-like deposits, whereas no neuronal CD2AP deposits were detected in PSP or CBD samples, which suggested an association of CD2AP neuronal expression with 3R-Tau-diseases. In conclusion, our findings open a new road to investigate the complex cellular mechanism underlying the tangle conformation and tau pathology in the brain.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Humanos , Emaranhados Neurofibrilares/metabolismo , Neurônios/patologia , Fosforilação , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo
4.
Acta Neuropathol Commun ; 9(1): 154, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530925

RESUMO

Brain accumulation of amyloid-beta (Aß) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aß deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-ß-amyloidosis to specifically identify vascular Aß-associated proteins. We focused on one of the main proteins detected in the Aß-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aß-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aß deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aß40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aß pathology from parenchymal Aß deposition.


Assuntos
Antígenos de Superfície/biossíntese , Encéfalo/metabolismo , Encéfalo/patologia , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Proteínas do Leite/biossíntese , Idoso , Animais , Antígenos de Superfície/genética , Biomarcadores/metabolismo , Células Cultivadas , Angiopatia Amiloide Cerebral/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Leite/genética
5.
Biomedicines ; 9(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199476

RESUMO

New evidence refers to a high degree of heterogeneity in normal but also Alzheimer's disease (AD) clinical and temporal patterns, increased mortality, and the need to find specific end-of-life prognosticators. This heterogeneity is scarcely explored in very old male AD mice models due to their reduced survival. In the present work, using 915 (432 APP23 and 483 C57BL/6 littermates) mice, we confirmed the better survival curves in male than female APP23 mice and respective wildtypes, providing the chance to characterize behavioral signatures in middle-aged, old, and long-lived male animals. The sensitivity of a battery of seven paradigms for comprehensive screening of motor (activity and gait analysis), neuropsychiatric and cognitive symptoms was analyzed using a cohort of 56 animals, composed of 12-, 18- and 24-month-old male APP23 mice and wildtype littermates. Most variables analyzed detected age-related differences. However, variables related to coping with stress, thigmotaxis, frailty, gait, and poor cognition better discriminated the behavioral phenotype of male APP23 mice through the three old ages compared with controls. Most importantly, non-linear age- and genotype-dependent behavioral signatures were found in long-lived animals, suggesting crosstalk between chronological and biological/behavioral ages useful to study underlying mechanisms and distinct compensations through physiological and AD-associated aging.

6.
J Clin Med ; 10(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801197

RESUMO

Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage (ICH) in elderly patients. Growing evidence suggests a potential role of aquaporin 4 (AQP4) in amyloid-beta-associated diseases, including CAA pathology. Our aim was to investigate the circulating levels of AQP4 in a cohort of patients who had suffered a lobar ICH with a clinical diagnosis of CAA. AQP4 levels were analyzed in the serum of 60 CAA-related ICH patients and 19 non-stroke subjects by enzyme-linked immunosorbent assay (ELISA). The CAA-ICH cohort was divided according to the time point of the functional outcome evaluation: mid-term (12 ± 18.6 months) and long-term (38.5 ± 32.9 months) after the last ICH. Although no differences were found in AQP4 serum levels between cases and controls, lower levels were found in CAA patients presenting specific hemorrhagic features such as ≥2 lobar ICHs and ≥5 lobar microbleeds detected by magnetic resonance imaging (MRI). In addition, CAA-related ICH patients who presented a long-term good functional outcome had higher circulating AQP4 levels than subjects with a poor outcome or controls. Our data suggest that AQP4 could potentially predict a long-term functional outcome and may play a protective role after a lobar ICH.

7.
Alzheimers Res Ther ; 11(1): 42, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077261

RESUMO

BACKGROUND: ApoJ/clusterin is a multifunctional protein highly expressed in the brain. The implication of ApoJ in ß-amyloid (Aß) fibrillization and clearance in the context of Alzheimer's disease has been widely studied, although the source and concentration of ApoJ that promotes or inhibits Aß cerebral accumulation is not clear yet. ApoJ is abundant in plasma and approximately 20% can appear bound to HDL-particles. In this regard, the impact of plasmatic ApoJ and its lipidation status on cerebral ß-amyloidosis is still not known. Hence, our main objective was to study the effect of a peripheral increase of free ApoJ or reconstituted HDL particles containing ApoJ in an experimental model of cerebral ß-amyloidosis. METHODS: Fourteen-month-old APP23 transgenic mice were subjected to subchronic intravenous treatment with rHDL-rApoJ nanodiscs or free rApoJ for 1 month. Aß concentration and distribution in the brain, as well as Aß levels in plasma and CSF, were determined after treatments. Other features associated to AD pathology, such as neuronal loss and neuroinflammation, were also evaluated. RESULTS: Both ApoJ-based treatments prevented the Aß accumulation in cerebral arteries and induced a decrease in total brain insoluble Aß42 levels. The peripheral treatment with rApoJ also induced an increase in the Aß40 levels in CSF, whereas the concentration remained unaltered in plasma. At all the endpoints studied, the lipidation of rApoJ did not enhance the protective properties of free rApoJ. The effects obtained after subchronic treatment with free rApoJ were accompanied by a reduction in hippocampal neuronal loss and an enhancement of the expression of a phagocytic marker in microglial cells surrounding Aß deposits. Finally, despite the activation of this phagocytic phenotype, treatments did not induce a global neuroinflammatory status. In fact, free rApoJ treatment was able to reduce the levels of interleukin-17 (IL17) and keratinocyte chemoattractant (KC) chemokine in the brain. CONCLUSIONS: Our results demonstrate that an increase in circulating human rApoJ induces a reduction of insoluble Aß and CAA load in the brain of APP23 mice. Thus, our study suggests that peripheral interventions, based on treatments with multifunctional physiological chaperones, offer therapeutic opportunities to regulate the cerebral Aß load.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clusterina/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Angiopatia Amiloide Cerebral/metabolismo , Encefalite/metabolismo , Células HEK293 , Humanos , Lipoproteínas HDL/administração & dosagem , Camundongos Transgênicos , Proteínas Recombinantes/administração & dosagem
8.
Sci Rep ; 7(1): 14637, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116115

RESUMO

Cerebral ß-amyloidosis is a major feature of Alzheimer's disease (AD), characterized by the accumulation of ß-amyloid protein (Aß) in the brain. Several studies have implicated lipid/lipoprotein metabolism in the regulation of ß-amyloidosis. In this regard, HDL (High Density Lipoprotein)-based therapies could ameliorate pathological features associated with AD. As apolipoprotein J (ApoJ) is a natural chaperone that interacts with Aß, avoiding its aggregation and toxicity, in this study we propose to prepare reconstituted rHDL-rApoJ nanoparticles by assembling phospholipids with recombinant human ApoJ (rApoJ). Hence, rHDL particles were prepared using the cholate dialysis method and characterized by N-PAGE, dynamic light scattering, circular dichroism and electron transmission microscopy. The preparation of rHDL particles showed two-sized populations with discoidal shape. Functionally, rHDL-rApoJ maintained the ability to prevent the Aß fibrillization and mediated a higher cholesterol efflux from cultured macrophages. Fluorescently-labelled rHDL-rApoJ nanoparticles were intravenously administrated in mice and their distribution over time was determined using an IVIS Xenogen® imager. It was confirmed that rHDL-rApoJ accumulated in the cranial region, especially in old transgenic mice presenting a high cerebral Aß load. In conclusion, we have standardized a reproducible protocol to produce rHDL-rApoJ nanoparticles, which may be potentially considered as a therapeutic option for ß-amyloid-related pathologies.


Assuntos
Doença de Alzheimer/terapia , Amiloidose/terapia , Encéfalo/metabolismo , Clusterina/administração & dosagem , Lipoproteínas HDL/administração & dosagem , Nanocompostos/administração & dosagem , Placa Amiloide/prevenção & controle , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Encéfalo/patologia , Clusterina/química , Modelos Animais de Doenças , Humanos , Lipoproteínas HDL/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nanocompostos/química , Placa Amiloide/patologia
9.
Acta Neuropathol Commun ; 5(1): 77, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078805

RESUMO

Basal forebrain cholinergic neurons (BFCNs) are believed to be one of the first cell types to be affected in all forms of AD, and their dysfunction is clinically correlated with impaired short-term memory formation and retrieval. We present an optimized in vitro protocol to generate human BFCNs from iPSCs, using cell lines from presenilin 2 (PSEN2) mutation carriers and controls. As expected, cell lines harboring the PSEN2 N141I mutation displayed an increase in the Aß42/40 in iPSC-derived BFCNs. Neurons derived from PSEN2 N141I lines generated fewer maximum number of spikes in response to a square depolarizing current injection. The height of the first action potential at rheobase current injection was also significantly decreased in PSEN2 N141I BFCNs. CRISPR/Cas9 correction of the PSEN2 point mutation abolished the electrophysiological deficit, restoring both the maximal number of spikes and spike height to the levels recorded in controls. Increased Aß42/40 was also normalized following CRISPR/Cas-mediated correction of the PSEN2 N141I mutation. The genome editing data confirms the robust consistency of mutation-related changes in Aß42/40 ratio while also showing a PSEN2-mutation-related alteration in electrophysiology.


Assuntos
Doença de Alzheimer/fisiopatologia , Sistemas CRISPR-Cas , Neurônios Colinérgicos/fisiologia , Edição de Genes , Células-Tronco Pluripotentes Induzidas/fisiologia , Presenilina-2/genética , Potenciais de Ação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Proteínas Reguladoras de Apoptose , Prosencéfalo Basal/metabolismo , Morte Celular , Linhagem Celular , Neurônios Colinérgicos/patologia , Feminino , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese , Fragmentos de Peptídeos/metabolismo , Presenilina-2/metabolismo , RNA Mensageiro/metabolismo
10.
Neurobiol Aging ; 60: 116-128, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28941727

RESUMO

Beyond the crucial role of apolipoprotein A-I (ApoA-I) on peripheral cholesterol metabolism, this apolipoprotein has also been implicated in beta amyloid (Aß)-related neuropathologies. ApoA-I-Milano (M) is a mutated variant, which showed increased vasoprotective properties compared to ApoA-I-wild type in models of atherosclerosis and cardiovascular damage. We speculated that ApoA-I-M may also protect Aß-affected vasculature and reverse some of the pathological features associated with Alzheimer's disease (AD). For this purpose, we produced and characterized human recombinant ApoA-I-wild type and ApoA-I-M proteins. Both of them were able to avoid the aggregation of Aß in vitro, even though recombinant ApoA-I-M was significantly more effective in protecting endothelial cells from Aß(1-42)-toxicity. Next, we determined the effect of chronic intravenous administration of rApoA-I-M in the APP23-transgenic mouse model of AD. We found reduced cerebral Aß levels in mice that received rApoA-I-M, which were accompanied by a lower expression of astrocyte and microglia neuroinflammatory markers. Our results suggest an applicability of this molecule as a therapeutic candidate for protecting the brain in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína A-I/administração & dosagem , Encéfalo/metabolismo , Animais , Apolipoproteína A-I/farmacologia , Apolipoproteína A-I/fisiologia , Modelos Animais de Doenças , Infusões Intravenosas , Camundongos Transgênicos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...