Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Clin Chem Lab Med ; 62(5): 946-957, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38008765

RESUMO

OBJECTIVES: The aim of the present study was to establish the population- and laboratory-specific reference intervals (RIs) for the Slovenian adult population for 24 trace elements (TEs) in blood, plasma and erythrocytes and to evaluate the impact of gender, age, seafood consumption, smoking habits and amalgam fillings on TEs levels. METHODS: TEs (Mn, Co, Cu, Zn, Se and Mo, Li, Be, V, Cr, Ni, Ga, As, Rb, Sr, Ag, Cd, Sn, Cs, Au, Hg, Tl, Pb and U) were determined in 192 a priori selected blood donors (107 women and 85 men, aged 18-65 years), using inductively coupled plasma mass spectrometry (ICP-MS) with the Octopole Reaction System. Participants filled out a questionnaire, and RIs were established according to the Clinical and Laboratory Standards Institute (CLSI) guidelines for TEs. RESULTS: Uniform RIs for non-essential and gender-specific for essential TEs in blood, plasma and erythrocytes were established. In our population, higher blood and plasma Cu, and erythrocyte Mn levels in women were found. In men, blood Zn, plasma Zn, Mn and Se, and erythrocyte Cu levels were higher. Zn levels were higher in 30-39 years age group. Pb and Sr increased with age. Smoking positively affected Cd, Pb, Cs and Rb; seafood consumption increased As, Hg and Zn; and amalgam increased Hg, Ag and Cu levels. CONCLUSIONS: Essential TEs were inside recommended levels, and the non-essential ones were far below critical levels. Established RIs will provide an important foundation for clinical diagnostics, safety erythrocyte transfusions assessment, toxicology and epidemiological studies.


Assuntos
Mercúrio , Oligoelementos , Adulto , Masculino , Humanos , Feminino , Espectrometria de Massas/métodos , Oligoelementos/análise , Cádmio , Chumbo , Eritrócitos/química
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762611

RESUMO

In the present study, we examined redox status parameters in arterial and venous blood samples, its potential to predict the prognosis of acute myocardial infarction (AMI) patients assessed through its impact on the comprehensive grading SYNTAX score, and its clinical accuracy. Potential connections between common blood biomarkers, biomarkers of redox status, leukocyte telomere length, and telomerase enzyme activity in the acute myocardial infarction burden were assessed using principal component analysis (PCA). This study included 92 patients with acute myocardial infarction. Significantly higher levels of advanced oxidation protein products (AOPP), superoxide anion (O2•-), ischemia-modified albumin (IMA), and significantly lower levels of total oxidant status (TOS) and total protein sulfhydryl (SH-) groups were found in arterial blood than in the peripheral venous blood samples, while biomarkers of the telomere-telomerase system did not show statistical significance in the two compared sample types (p = 0.834 and p = 0.419). To better understand the effect of the examined biomarkers in the AMI patients on SYNTAX score, those biomarkers were grouped using PCA, which merged them into the four the most contributing factors. The "cholesterol-protein factor" and "oxidative-telomere factor" were independent predictors of higher SYNTAX score (OR = 0.338, p = 0.008 and OR = 0.427, p = 0.035, respectively), while the ability to discriminate STEMI from non-STEMI patients had only the "oxidative-telomere factor" (AUC = 0.860, p = 0.008). The results show that traditional cardiovascular risk factors, i.e., high total cholesterol together with high total serum proteins and haemoglobin, are associated with severe disease progression in much the same way as a combination of redox biomarkers (pro-oxidant-antioxidant balance, total antioxidant status, IMA) and telomere length.


Assuntos
Infarto do Miocárdio , Telomerase , Humanos , Antioxidantes , Biomarcadores , Albumina Sérica , Oxirredução
3.
Arch Med Sci ; 19(2): 313-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034531

RESUMO

Introduction: Telomeres are protective chromosomal ends. Short telomeres are a proven biomarker of biological aging. We aimed to find an association of telomere length and telomerase activity in circulating leukocytes and thromboaspirates of patients with acute myocardial infarction. Furthermore, association of the telomere-telomerase system with oxidative stress markers (as common risk factors for coronary artery disease (CAD)) was tested. Material and methods: Patients were selected from the patients admitted to the intensive care unit with acute myocardial infarction with ST-segment elevation (STEMI), with the following inclusion criteria - STEMI patients between 18 and 80 years old of both genders and candidates for primary percutaneous coronary intervention, with infarction pain present for a maximum of 12 h. In all the patients leukocyte telomere length, telomerase activity and scores related to oxidative-stress status (Protective, Damage and OXY) were evaluated. Results: Patients were divided into different groups: with stable angina pectoris (AP) (n = 22), acute myocardial infarction with: STEMI (n = 93), non-obstructive coronary arteries (MINOCA) (n = 7), blood vessel rupture (n = 6) at three time points, and compared to the group of 84 healthy subjects. Telomerase activity was significantly higher in all CAD sub-groups compared to the control group (AP = 0.373 (0.355-0.386), STEMI = 0.375 (0.349-0.395), MINOCA = 0.391 (0.366-0.401), blood vessel rupture = 0.360 (0.352-0.385) vs. CG = 0.069 (0.061-0.081), p < 0.001), while telomeres were significantly shorter in STEMI, MINOCA and blood vessel rupture groups compared to the control group (STEMI = 1.179 (0.931-1.376), MINOCA = 1.026 (0.951-1.070), blood vessel rupture = 1.089 (0.842-1.173) vs. CG = 1.329 (1.096-1.624), p = 0.030]. Values of OXY score were significantly higher in STEMI and MINOCA patients compared to the control group and AP patients (5.83 (4.55-7.54) and 10.28 (9.19-10.72) vs. 4.94 (3.29-6.18) and 4.18 (2.58-4.86), p < 0.001). Longer telomeres and higher telomerase activity were found in thromboaspirates, compared to the peripheral blood leukocytes in the same patients (1.25 (1.01-1.84) vs. 1.18 (0.909-1.516), p = 0.036; and 0.366 (0.367-0.379) vs. 0.366 (0.367-0.379), p < 0.001, respectively). In addition, telomere length and telomerase activity had good diagnostic ability to separate STEMI patients from healthy persons. Conclusions: Leukocyte telomere length and telomerase activity can differentiate CAD patients from healthy persons, and relate CAD to oxidative stress.

4.
Ann Rheum Dis ; 82(7): 985-991, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36941031

RESUMO

OBJECTIVES: Teriparatide (TPTD) is an effective treatment for osteoporosis but the individual response to therapy is variable for reasons that are unclear. This study aimed to determine whether the response to TPTD might be influenced by genetic factors. METHODS: We searched for predictors of the response of bone mineral density (BMD) to TPTD using a two-stage genome-wide association study in 437 patients with osteoporosis from three referral centres. Demographic and clinical data including the response of BMD to treatment at the lumbar spine and hip were extracted from the medical records of each participant. RESULTS: Allelic variation at rs6430612 on chromosome 2, close to the CXCR4 gene was associated with the response of spine BMD to TPTD at a genome wide significant level (p=9.2×10-9 beta=-0.35 (-0.47 to -0.23)). The increase in BMD was almost twice as great in AA homozygotes at rs6430612 as compared with GG homozygotes with intermediate values in heterozygotes. The same variant was also associated with response of femoral neck and total hip BMD (p=0.007). An additional locus on chromosome 19 tagged by rs73056959 was associated with the response of femoral neck BMD to TPTD (p=3.5×10-9, beta=-1.61 (-2.14 to -1.07)). CONCLUSIONS: Genetic factors influence the response to TPTD at the lumbar spine and hip with a magnitude of effect that is clinically relevant. Further studies are required to identify the causal genetic variants and underlying mechanisms as well as to explore how genetic testing for these variants might be implemented in clinical practice.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Humanos , Feminino , Densidade Óssea , Teriparatida/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Estudo de Associação Genômica Ampla , Osteoporose Pós-Menopausa/tratamento farmacológico
6.
Biomol Biomed ; 23(1): 114-125, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880348

RESUMO

Several studies indicate the influence of olanzapine on bone metabolism; however, the results are contradictory. We evaluated the effects of olanzapine on the Wnt/ß-catenin signaling pathway, physiological alveolar bone turnover, and alveolar bone modeling due to an applied orthodontic force. Adult male rats (n=48) were treated with either olanzapine or a vehicle for 21 days; then 8 rats from each group were sacrificed and the rest were divided into 4 groups: control, appliance-only, olanzapine-only, and olanzapine-appliance. The rats in the appliance groups were mounted with a superelastic closed coil spring that maintained constant orthodontic force between molars and incisors. We studied the effects of olanzapine on physiological alveolar bone turnover on day 21 of the experiment, and on alveolar bone modeling due to orthodontic force on day 56. We determined tooth movement, alveolar bone volume, activity of bone-specific cells, serum alkaline phosphatase (ALP) activity, and gene expression levels of Wnt/ß-catenin signaling target genes. During forced bone modeling, olanzapine increased osteoblast volume (P<0.0001) and ALP activity (P=0.0011) and decreased osteoclast volume (P<0.0001) and gene expression of the Wnt/ß-catenin signaling target genes Fosl1, Axin2, and Dkk1(P=0.001, P=0.0076, and P=0.036, respectively), and the osteocyte markers Sost and Dmp1 (P=0.0432 and P=0.0021, respectively). Similar results were obtained during physiological alveolar bone turnover on day 21, when olanzapine downregulated the gene expression of osteocyte markers and Wnt/ß-catenin signaling target genes. We concluded that olanzapine attenuated osteocyte maturation during forced bone modeling and physiological alveolar bone turnover, potentially through downregulation of the Wnt/ß-catenin signaling pathway.


Assuntos
Osteócitos , Via de Sinalização Wnt , Ratos , Animais , Masculino , Osteócitos/metabolismo , beta Catenina/genética , Olanzapina/farmacologia , Osso e Ossos/metabolismo
7.
J Med Biochem ; 41(3): 282-289, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36042901

RESUMO

Background: Type 1 diabetes mellitus (T1DM) is one of the most common endocrine diseases in children. T-cell autoreactivity toward b-cells is controlled by significant changes in metabolism of T cells. Mammalian target of rapamycin (mTOR) is an important intracellular regulator of metabolism and cell growth. MAPK/MAK/MRK overlapping kinase 1 (MOK1) is one of the less known regulators of mTOR. We sought to investigate if MOK1 and mTOR mRNA levels in peripheral blood mononuclear cells (PBMCs) of T1DM pediatric patients are different compared to healthy subjects. Methods: This study included 172 adolescents with T1DM and 36 healthy adolescent volunteers designated for control group (CG). MOK1 and mTOR mRNA levels were determined in PBMCs by qPCR. Results: T1DM patients have significant downregulation of MOK1 mRNA levels in PBMCs compared CG (P=0.018), while there was no significant difference in mTOR mRNA levels (P=0.891). Furthermore, in T1DM patients, MOK1 significantly correlated with age, triglycerides and mTOR, while mTOR correlated significantly with BMI and systolic blood pressure. Overweight T1DM subjects had significantly lower MOK1 (P=0.034) and mTOR (P=0.017) mRNA levels, together with significantly higher levels of systolic blood pressure (P<0.001), total cholesterol (P=0.001), LDL-cholesterol (P=0.001) and CRP (P<0.001). Multi - variate analysis showed that MOK1 was independently negatively associated with T1DM when adjusted for sex, age, HDL-C and CRP (OR=0.417 (95%CI: 0.175-0.997), p=0.049). Conclusions: Our study demonstrated for the first time that T1DM is associated with MOK1 downregulation. In addition, downregulation of both mTOR and MOK1 gene expressions was associated with cardiovascular risk factors in overweight T1DM patients.

8.
Genes (Basel) ; 13(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36011354

RESUMO

Osteoporosis is a metabolic bone disease that mostly affects the elderly. A lot of drugs are available, mostly with an antiresorptive effect but just a few with an osteoanabolic effect, meaning they promote bone building. PTH (1-34) or teriparatide is an osteoanabolic drug, but its efficacy varies between individuals. We performed a literature review and extracted a dataset of 62 microRNAs (miRNAs) from 10 different studies; predicted miRNA target interactions (MTIs) were obtained with the help of four software tools: DIANA, miRWalk, miRDB and TargetScan. With the construction of an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated miR-146a-5p, miR-551b-5p, miR-205-3p, miR-33a-3p, miR-338-5p as miRNAs with the most interactions and miR-410-3p as the miRNA targeting bone-related pathways with the highest significance. These miRNAs could help in further understanding the mechanism of action of PTH on bone metabolism and osteoporosis. They also have the potential for novel network-based biomarkers for osteoporosis treatment efficacy and safety and as new therapeutic targets.


Assuntos
MicroRNAs , Osteoporose , Hormônio Paratireóideo/genética , Idoso , Epigênese Genética , Epigenômica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/genética
9.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457075

RESUMO

RT-qPCR is the gold standard and the most commonly used method for measuring gene expression. Selection of appropriate reference gene(s) for normalization is a crucial part of RT-qPCR experimental design, which allows accurate quantification and reliability of the results. Because there is no universal reference gene and even commonly used housekeeping genes' expression can vary under certain conditions, careful selection of an appropriate internal control must be performed for each cell type or tissue and experimental design. The aim of this study was to identify the most stable reference genes during osteogenic differentiation of the human osteosarcoma cell lines MG-63, HOS, and SaOS-2 using the geNorm, NormFinder, and BestKeeper statistical algorithms. Our results show that TBP, PPIA, YWHAZ, and EF1A1 are the most stably expressed genes, while ACTB, and 18S rRNA expressions are most variable. These data provide a basis for future RT-qPCR normalizations when studying gene expression during osteogenic differentiation, for example, in studies of osteoporosis and other bone diseases.


Assuntos
Genes Essenciais , Osteogênese , Proteínas 14-3-3/genética , Perfilação da Expressão Gênica/métodos , Humanos , Osteogênese/genética , Peptidilprolil Isomerase , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Proteína de Ligação a TATA-Box
10.
Front Endocrinol (Lausanne) ; 12: 731217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938269

RESUMO

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Doenças Musculoesqueléticas/genética , Animais , Animais Geneticamente Modificados , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/tendências , Humanos , Modelos Animais , Herança Multifatorial/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Fenótipo , Locos de Características Quantitativas , Integração de Sistemas , Estudos de Validação como Assunto
11.
Open Med (Wars) ; 16(1): 1544-1551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722890

RESUMO

The aim of this study was to investigate the characteristics of postmenopausal women prescribed with teriparatide in Slovenia, during the first decade after its approval, and the predictors of bone mineral density (BMD) improvement with treatment. We retrospectively studied postmenopausal osteoporotic patients prescribed with teriparatide at tertiary center from 2006 to 2015. BMD was measured at standard sites by DXA at baseline, after 12 and 24 months. 25-hydroxyvitamin D and procollagen type I N-terminal propeptide (PINP) were measured at the same time-points. The inclusion criteria were met by 188 women (aged 71 years on average), 151 (80.3%) with postmenopausal and 37 (19.7%) with glucocorticoid-induced osteoporosis. Everyone had at least one fracture, 159 (84.6%) had ≥2 fractures, with vertebral fractures in 172 patients (91.5%). All patients had been previously on antiresorptives for 8.6 years on average. The average BMD change at lumbar spine, total hip, and femoral neck was +5.0%, -1.1%, and +0.3% after 24 months of treatment, respectively. Higher baseline PINP was associated with higher BMD increase at all sites after the first 12 months. Teriparatide was prescribed mostly to elderly women with severe osteoporosis who had sustained two or more fractures despite long-term antiresorptive therapy. Baseline PINP might predict initial BMD increase with teriparatide.

12.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639180

RESUMO

The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/ß-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, ß-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/fisiologia , Diferenciação Celular , Osteogênese , Via de Sinalização Wnt , Animais , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-34360156

RESUMO

BACKGROUND: Coronavirus disease (COVID-19) vaccine-related side effects have a determinant role in the public decision regarding vaccination. Therefore, this study has been designed to actively monitor the safety and effectiveness of COVID-19 vaccines globally. METHODS: A multi-country, three-phase study including a cross-sectional survey to test for the short-term side effects of COVID-19 vaccines among target population groups. In the second phase, we will monitor the booster doses' side effects, while in the third phase, the long-term safety and effectiveness will be investigated. A validated, self-administered questionnaire will be used to collect data from the target population; Results: The study protocol has been registered at ClinicalTrials.gov, with the identifier NCT04834869. CONCLUSIONS: CoVaST is the first independent study aiming to monitor the side effects of COVID-19 vaccines following booster doses, and the long-term safety and effectiveness of said vaccines.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , Estudos Transversais , Humanos , Estudos Prospectivos , SARS-CoV-2 , Vacinas/efeitos adversos , Conduta Expectante
14.
Endocr Pract ; 27(9): 941-947, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34111556

RESUMO

OBJECTIVE: To compare bone mineral density (BMD) changes after 12 months of treatment with denosumab or bisphosphonates in postmenopausal women with severe osteoporosis after stopping teriparatide therapy. METHODS: We retrospectively analyzed 140 postmenopausal women (mean age, 74.2 years) with severe osteoporosis who had been treated with teriparatide for 18 to 24 months at our outpatient clinic in a tertiary endocrine center between 2006 and 2015. After stopping teriparatide therapy, they continued treatment with a bisphosphonate (alendronate, risedronate, ibandronate, or zoledronic acid) or denosumab while receiving daily vitamin D and calcium. BMD at the lumbar spine (LS), total hip (TH), and femoral neck (FN) was measured by dual energy x-ray absorptiometry when teriparatide therapy was discontinued (baseline) and after 12 months of further treatment. Multivariate linear regression models were used to identify the predictors of BMD gain. RESULTS: After stopping teriparatide therapy, 70 women continued treatment with bisphosphonates and 70 received denosumab. LS, but not TH or FN, BMD gain was significantly greater in the denosumab group than in the bisphosphonates group at 12 months. Multivariate analysis showed that BMD gain at the LS was negatively associated with bisphosphonate versus denosumab treatment and positively associated with baseline serum total procollagen type I N-terminal propeptide. BMD gains at the FN were predicted by higher baseline serum urate levels. BMD gains at the TH and FN were negatively associated with pretreatment BMD gains at the same site. CONCLUSION: Twelve months after stopping teriparatide therapy, sequential denosumab treatment appeared to yield higher additional LS BMD gain on average compared with bisphosphonates treatment.


Assuntos
Conservadores da Densidade Óssea , Denosumab , Difosfonatos , Osteoporose Pós-Menopausa , Idoso , Densidade Óssea , Conservadores da Densidade Óssea/uso terapêutico , Denosumab/uso terapêutico , Difosfonatos/uso terapêutico , Substituição de Medicamentos , Feminino , Humanos , Osteoporose Pós-Menopausa/tratamento farmacológico , Estudos Retrospectivos , Teriparatida/uso terapêutico
15.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494362

RESUMO

Glucocorticoid osteoporosis is a serious side effect of long term glucocorticoid uptake and it is caused by osteoblast apoptosis and imbalance in the major bone remodeling pathway RANK/RANKL/OPG. The impact of glucocorticoid on the maintenance of RANK/RANKL/OPG is well explored; dexamethasone was shown to disturb the ratio between OPG and RANKL level by decreasing the expression level of OPG and increasing level of RANKL. Here, were aimed to decipher whether glucocorticoid receptor directly influences RANKL promoter activity and its transcriptional regulation. We demonstrate that overexpression of glucocorticoid receptor (GR) NR3C1 increased RANKL promoter activity in human osteosarcoma, cervical cancer (2-fold) and adenocarcinoma cells (4.5-fold). Mutational analysis revealed that +352 site in the RANKL promoter is functional glucocorticoid responsive element (GRE) since the effect of GR on RANKL promoter activity was diminished by mutation at this site. Overexpression of NR3C1 upregulated RANKL mRNA expression 1.5-fold in human A549 and HOS cells. On the other hand silencing of NR3C1 caused slight decrease in RANKL mRNA level, suggesting that NR3C1 directly accounts for RANKL transcriptional regulation. Using electrophoretic mobility shift assay we demonstrate that NR3C1 binds to the proximal RANKL promoter region. Our study provides evidences that NR3C1 directly upregulates RANKL transcription in human cell lines and connects the missing link in the mechanism of RANK/RANKL/OPG imbalance of glucocorticoid induced osteoporosis.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Ligante RANK/genética , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Linhagem Celular Tumoral , Humanos , Mutação , Ligação Proteica , Ligante RANK/metabolismo , Receptores de Glucocorticoides/genética
16.
Environ Int ; 143: 105626, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32622117

RESUMO

We investigated the relationship between lipid binding glycoprotein apolipoprotein E (apoE; gene APOE) polymorphisms (ε4 allele carriers versus no carriers = Îµ4+/ε4-) and trace elements (TEs) (e.g., (methyl)mercury, arsenic, lead, cadmium, selenium, manganese, copper, and zinc) in mothers (N = 223) and their new-borns (N = 213) exposed to potentially toxic metal(loid)s from seafood consumption. The apoE isoform encoded by the ε4 allele is believed to have beneficial effects in early life but represents a risk factor for age-associated diseases. Under certain conditions ε4 carriers are more susceptible to oxidative stress and metal(loid) toxicity. DNA from Croatian pregnant women (N = 223, third trimester) and their new-borns (N = 176), was genotyped for APOE by TaqMan® SNP assay - rs429358 and rs7412. Seafood intake data and TE levels in maternal urine, milk, hair, peripheral venous blood, mixed cord blood, and new-borns' urine were available from previous studies. We compared TEs between ε4+ and ε4- carriers using Mann-Whitney U tests and applied multiple linear regression models to analyse the TE's dependence on the presence of allele ε4 (genotypes ε3/ε4, ε4/ε4) in combination with other explanatory variables. We identified 17% (n = 37) and 20% (n = 35) ε4 allele carriers in mothers and new-borns, respectively. The Mann-Whitney U test showed that mothers with the ε4 allele had significantly higher mean levels of (methyl)mercury in peripheral venous blood, cord blood, and hair; arsenic in urine and cord blood; and selenium in peripheral venous blood and plasma. However, taking confounders into account, only the maternal plasma selenium remained statistically significant in the linear regression models (ε4 carriers vs non-carriers: 62.6 vs 54.9 ng/mL, p < 0.001). Literature suggestions of possible ε4 allele impact on Hg levels were not observed, while superior selenium status observed in healthy pregnant women carrying allele ε4 could be linked to the proposed APOE ε4 beneficial effects early in life.


Assuntos
Oligoelementos , Apolipoproteínas E/genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo Genético , Gravidez , Gestantes
17.
Stem Cell Res Ther ; 11(1): 146, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245507

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) can replenish the aged cells of the musculoskeletal system in adult life. Stem cell exhaustion and decrease in their regenerative potential have been suggested to be hallmarks of aging. Here, we investigated whether muscle- and bone-derived MSCs of patients with osteoarthritis and osteoporosis are affected by this exhaustion, compared to healthy donors. METHODS: Patients with primary osteoarthritis, femoral neck fractures due to osteoporosis, and healthy donors (controls) were included. MSCs were isolated from the skeletal muscle and subchondral bone from each patient and compared using ex vivo and in vitro analyses, including immunophenotyping, colony-forming unit fibroblast assays, growth kinetics, cell senescence, multilineage potential, and MSC marker gene expression profiling. RESULTS: Freshly isolated cells from muscle from patients with osteoarthritis showed a lower proportion of CD45/CD19/CD14/CD34-negative cells compared to patients with osteoporosis and healthy donors. Freshly isolated muscle cells from patients with osteoarthritis and osteoporosis also showed higher clonogenicity compared to healthy donors. MSCs from both tissues of osteoarthritis patients showed significantly reduced osteogenesis and MSCs from the bone also reduced adipogenesis. Chondrogenic pellet diameter was reduced in bone-derived MSCs from both patient groups compared to healthy donors. A significant positive correlation was observed between adipogenesis and CD271 expression in muscle-derived MSCs. CD73 was significantly lower in bone-derived MSCs from osteoarthritis patients, compared to osteoporosis patients. Gene expression profiling showed significantly lower expression of MSC marker gene leptin receptor, LEPR, previously identified as the major source of the bone and adipocytes in the adult bone marrow, in bone-derived MSCs from patients with osteoarthritis in comparison with osteoporotic patients and healthy donors. CONCLUSIONS: Our results show deficient ex vivo and in vitro properties of both skeletal muscle- and bone-derived MSCs in osteoarthritis and osteoporosis patients, compared to healthy donors. In bone-derived MSCs from patients with osteoarthritis, we also identified a lower expression of the leptin receptor, a marker of MSCs that present a major source of MSCs in the adult bone marrow. This suggests that exhaustion of skeletal muscle- and bone-derived MSCs is a hallmark of osteoarthritis and osteoporosis, which defines the need for further clinical trials of stem cell transplantation in these patients.


Assuntos
Fraturas do Colo Femoral , Células-Tronco Mesenquimais , Osteoartrite , Adulto , Idoso , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Humanos , Músculo Esquelético , Osteogênese
18.
Stem Cell Rev Rep ; 16(4): 742-754, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32200505

RESUMO

Mesenchymal stem/ stromal cell (MSC) exhaustion has been suggested to be a hallmark of aging. Osteoarthritis has a complex etiology that comprises several factors. Dysplasia has been shown to be an individual risk factor for osteoarthritis. Subchondral bone changes are often the first detectable alterations in osteoarthritis. In this study, we aimed to determine whether skeletal MSCs are differentially affected in patients with primary versus dysplastic osteoarthritis. Patients undergoing hip arthroplasty due to primary osteoarthritis (n = 11) and osteoarthritis with hip dysplasia (n = 10) were included in the study. Femoral head subchondral bone was used for isolation of MSCs. The cells were compared using detailed ex-vivo and in-vitro analyses, which included immunophenotyping, colony-forming-unit fibroblast assay, growth kinetics, senescence, multilineage potential, immunophenotyping, and MSC marker-gene expression profiling. Isolated cells from primary osteoarthritis patients showed decreased viability in comparison with those from dysplasia patients, with similar mesenchymal fractions (i.e., CD45/ CD19/ CD14/ CD34-negative cells). In-vitro expanded MSCs from primary osteoarthritis patients showed reduced osteogenic and chondrogenic potential in comparison with dysplasia patients. There were no differences in clonogenicity, growth kinetics, senescence, adipogenic potential, and immunophenotype between these groups. Gene expression profiling showed well-known marker of bone marrow MSCs, the leptin receptor, to be significantly lower for primary osteoarthritis patients. Our study shows that the pathology of primary osteoarthritis is accompanied by bone MSC exhaustion, while biomechanical dysfunction associated with hip dysplasia can induce secondary osteoarthritis without this MSC impairment. Our study suggests that subchondral bone MSC exhaustion is implicated in the pathology of primary osteoarthritis.


Assuntos
Osso e Ossos/patologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Condrogênese , Feminino , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Masculino , Osteoartrite/genética , Osteogênese , Receptores para Leptina/metabolismo
19.
Menopause ; 27(3): 319-325, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31663987

RESUMO

OBJECTIVE: Plasma/serum microRNAs (miRNAs) are proposed to have a role in the development of osteoporosis, and their levels can be affected by physical activity. Therefore, the aim of this study was to analyze differences in plasma miRNAs levels in postmenopausal women and to simultaneously find novel extracellular miRNAs that are associated with variations in physical activities. METHODS: We measured hsa-miR-148a-3p, hsa-miR-125b, hsa-miR-21-5p, hsa-miR-93-5p, and hsa-miR-30d-5p in a cohort of 149 postmenopausal women divided into subgroups based on the amount of physical activity by using quantitative polymerase chain reaction (qPCR). Further, the correlation of plasma microRNAs with sit-to-stand performance was examined. DIANA web server was used to find which Kyoto Encyclopedia of Genes and Genomes pathways (P < 0.05) were regulated by miRNAs associated with physical activity and sit-to-stand performance. RESULTS: Plasma levels of hsa-miR-30d-5p were significantly (P = 0.015) lower in participants with higher physical activity, and a borderline trend for hsa-miR-21-5p (P = 0.06) was noticed. Higher plasma levels of hsa-miR-21-5p (P = 0.01) and hsa-miR-93-5p (P = 0.04) were observed in the group with reduced sit-to-stand performance. The two miRNAs seem to primarily regulate fatty acid metabolism-related processes. CONCLUSIONS: Our results suggest that levels of selected cell-free miRNAs in postmenopausal women are associated with different physical activity regimes.


Assuntos
Exercício Físico/fisiologia , MicroRNAs/sangue , Pós-Menopausa/sangue , Idoso , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Fatores de Tempo
20.
Pharmacogenomics ; 20(15): 1063-1069, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31588876

RESUMO

The Fourth European Society of Pharmacogenomics and Personalized Therapy biennial conference was organized in collaboration with the Italian Society of Personalized Medicine (SIMeP) and was held at Benedictine Monastery of San Nicolò l'Arena in Catania, Sicily (Italy) on 4-7 October 2017. The congress addressed the research progress and clinical implementation in pharmacogenomics and personalized medicine. The Fourth European Society of Pharmacogenomics and Personalized Therapy congress brought together leading international scientists and healthcare professionals actively working in the fields of pharmacogenomics and personalized therapy. Altogether, 25 speakers in 15 session comprehensively covered broad spectrum of pharmacogenetics and pharmacogenomics research, clinical applications in different clinical disciplines attended by 270 delegates.


Assuntos
Farmacogenética/métodos , Medicina de Precisão/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...