Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 348: 119163, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827081

RESUMO

Healthy freshwater ecosystems can provide vital ecosystem services (ESs), and this capacity may be hampered due to water quality deterioration and climate change. In the currently available ES modeling tools, ecosystem processes are either absent or oversimplified, hindering the evaluation of impacts of restoration measures on ES provisioning. In this study, we propose an ES modeling tool that integrates lake physics, ecology and service provisioning into a holistic modeling framework. We applied this model to a Dutch quarry lake, to evaluate how nine ESs respond to technological-based (phosphorus (P) reduction) and nature-based measures (wetland restoration). As climate change might be affecting the future effectiveness of restoration efforts, we also studied the climate change impacts on the outcome of restoration measures and provisioning of ESs, using climate scenarios for the Netherlands in 2050. Our results indicate that both phosphorus reduction and wetland restoration mitigated eutrophication symptoms, resulting in increased oxygen concentrations and water transparency, and decreased phytoplankton biomass. Delivery of most ESs was improved, including swimming, P retention, and macrophyte habitat, whereas the ES provisioning that required a more productive system was impaired (sport fishing and bird watching). However, our modeling results suggested hampered effectiveness of restoration measures upon exposure to future climate conditions, which may require intensification of restoration efforts in the future to meet restoration targets. Importantly, ESs provisioning showed non-linear responses to increasing intensity of restoration measures, indicating that effectiveness of restoration measures does not necessarily increase proportionally. In conclusion, the ecosystem service modeling framework proposed in this study, provides a holistic evaluation of lake restoration measures on ecosystem services provisioning, and can contribute to development of climate-robust management strategies.


Assuntos
Ecossistema , Lagos , Mudança Climática , Ecologia , Fósforo/análise
2.
Glob Chang Biol ; 28(18): 5427-5440, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35694903

RESUMO

Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate change, but a global estimate is not currently available. Here, we project changes in global lake bottom temperatures and sediment methane production rates from 1901 to 2099. By the end of the 21st century, lake bottom temperatures are projected to increase globally, by an average of 0.86-2.60°C under Representative Concentration Pathways (RCPs) 2.6-8.5, with greater warming projected at lower latitudes. This future warming of bottom waters will likely result in an increase in methane production rates of 13%-40% by the end of the century, with many low-latitude lakes experiencing an increase of up to 17 times the historical (1970-1999) global average under RCP 8.5. The projected increase in methane production will likely lead to higher emissions from lakes, although the exact magnitude of the emission increase requires more detailed regional studies.


Assuntos
Atmosfera , Lagos , Mudança Climática , Aquecimento Global , Metano , Temperatura
3.
Sci Total Environ ; 814: 151925, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838923

RESUMO

Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO2) emissions. However, methane (CH4) may also be relevant due to its higher Global Warming Potential (GWP). We report CH4 emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.e., lakes, ponds, reservoirs, and streams) and climate zones (i.e., tropical, continental, and temperate); and ii) determine the environmental factors that control these emissions. CH4 emissions from dry inland waters were consistently higher than emissions observed in adjacent uphill soils, across climate zones and in all aquatic systems except for streams. However, the CH4 contribution (normalized to CO2 equivalents; CO2-eq) to the total GHG emissions of dry inland waters was similar for all types of aquatic systems and varied from 10 to 21%. Although we discuss multiple controlling factors, dry inland water CH4 emissions were most strongly related to sediment organic matter content and moisture. Summing CO2 and CH4 emissions revealed a cross-continental average emission of 9.6 ± 17.4 g CO2-eq m-2 d-1 from dry inland waters. We argue that increasing droughts likely expand the worldwide surface area of atmosphere-exposed aquatic sediments, thereby increasing global dry inland water CH4 emissions. Hence, CH4 cannot be ignored if we want to fully understand the carbon (C) cycle of dry sediments.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Lagos , Metano/análise , Óxido Nitroso/análise , Rios
4.
Water Res ; 201: 117286, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102597

RESUMO

Seasonal climate forecasts produce probabilistic predictions of meteorological variables for subsequent months. This provides a potential resource to predict the influence of seasonal climate anomalies on surface water balance in catchments and hydro-thermodynamics in related water bodies (e.g., lakes or reservoirs). Obtaining seasonal forecasts for impact variables (e.g., discharge and water temperature) requires a link between seasonal climate forecasts and impact models simulating hydrology and lake hydrodynamics and thermal regimes. However, this link remains challenging for stakeholders and the water scientific community, mainly due to the probabilistic nature of these predictions. In this paper, we introduce a feasible, robust, and open-source workflow integrating seasonal climate forecasts with hydrologic and lake models to generate seasonal forecasts of discharge and water temperature profiles. The workflow has been designed to be applicable to any catchment and associated lake or reservoir, and is optimized in this study for four catchment-lake systems to help in their proactive management. We assessed the performance of the resulting seasonal forecasts of discharge and water temperature by comparing them with hydrologic and lake (pseudo)observations (reanalysis). Precisely, we analysed the historical performance using a data sample of past forecasts and reanalysis to obtain information about the skill (performance or quality) of the seasonal forecast system to predict particular events. We used the current seasonal climate forecast system (SEAS5) and reanalysis (ERA5) of the European Centre for Medium Range Weather Forecasts (ECMWF). We found that due to the limited predictability at seasonal time-scales over the locations of the four case studies (Europe and South of Australia), seasonal forecasts exhibited none to low performance (skill) for the atmospheric variables considered. Nevertheless, seasonal forecasts for discharge present some skill in all but one case study. Moreover, seasonal forecasts for water temperature had higher performance in natural lakes than in reservoirs, which means human water control is a relevant factor affecting predictability, and the performance increases with water depth in all four case studies. Further investigation into the skillful water temperature predictions should aim to identify the extent to which performance is a consequence of thermal inertia (i.e., lead-in conditions).


Assuntos
Lagos , Água , Austrália , Europa (Continente) , Previsões , Humanos , Estações do Ano , Temperatura
5.
Nat Commun ; 12(1): 2318, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875656

RESUMO

One of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecological importance, historic and future global changes in stratification phenology are unknown. Here, we used a lake-climate model ensemble and long-term observational data, to investigate changes in lake stratification phenology across the Northern Hemisphere from 1901 to 2099. Under the high-greenhouse-gas-emission scenario, stratification will begin 22.0 ± 7.0 days earlier and end 11.3 ± 4.7 days later by the end of this century. It is very likely that this 33.3 ± 11.7 day prolongation in stratification will accelerate lake deoxygenation with subsequent effects on nutrient mineralization and phosphorus release from lake sediments. Further misalignment of lifecycle events, with possible irreversible changes for lake ecosystems, is also likely.

6.
Ambio ; 49(2): 531-540, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31140158

RESUMO

Artificial water bodies like ditches, fish ponds, weirs, reservoirs, fish ladders, and irrigation channels are usually constructed and managed to optimize their intended purposes. However, human-made aquatic systems also have unintended consequences on ecosystem services and biogeochemical cycles. Knowledge about their functioning and possible additional ecosystem services is poor, especially compared to natural ecosystems. A GIS analysis indicates that currently only ~ 10% of European surface waters are covered by the European Water Framework directive, and that a considerable fraction of the excluded systems are likely human-made aquatic systems. There is a clear mismatch between the high possible significance of human-made water bodies and their low representation in scientific research and policy. We propose a research agenda to build an inventory of human-made aquatic ecosystems, support and advance research to further our understanding of the role of these systems in local and global biogeochemical cycles as well as to identify other benefits for society. We stress the need for studies that aim to optimize management of human-made aquatic systems considering all their functions and to support programs designed to overcome barriers of the adoption of optimized management strategies.


Assuntos
Ecossistema , Peixes , Animais , Humanos
7.
Science ; 366(6467): 805-806, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727820
8.
Sci Total Environ ; 662: 434-445, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30690377

RESUMO

In this paper, we build a preliminary inventory of dissolved phase water emissions of 36 of the 45 chemical priority substances under the European Union's Water Framework Directive. For point sources, we consider the European Pollutant Release and Transfer Register (E-PRTR) containing reported emissions from major industrial facilities. We consider all other sources as diffuse, and we estimate European average chemical emission factors from available measurements of dissolved phase concentrations, assuming simple emission patterns such as population and agricultural land. The emission inventory enables modelling concentrations, which have been compared with independent measurements. Due to the way they are estimated, they cannot withstand a point-by-point comparison. However, predicted concentrations exhibit a frequency distribution and order of magnitude compatible with observations, and match a fair proportion of independently reported exceedances of environmental quality standards for many of the substances studied. While apparently a preliminary picture based on crude simplifications, our representation suggests that simple drivers such as population and agriculture are useful to describe chemical pollution at European scale. From our preliminary inventory, E-PRTR industrial point emissions seem to account for a relatively small share of total emissions. Consequently, apart from specific measures such as upgrades to urban wastewater treatment plants in certain high impact areas, the management of priority substances may require a more strategic approach to emission control, addressing chemical use across sectors and the management of out-phased, legacy chemicals. At the same time, we advocate that improving emission inventories requires monitoring data reflecting the variability of emission patterns across Europe, as presently available monitoring data do not enable a catchment-specific estimation of emissions.

9.
Sci Rep ; 8(1): 11462, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061568

RESUMO

Human appropriation of water resources may induce water stress in freshwater ecosystems when ecosystem needs are not met. Intensive abstraction and regulation cause river ecosystems to shift towards non-natural flow regimes, which might have implications for their water quality, biological structure and functioning. We performed a meta-analysis of published studies to assess the potential effects of water stress on nutrients, microcontaminants, biological communities (bacteria, algae, invertebrates and fish), and ecosystem functions (organic matter breakdown, gross primary production and respiration). Despite the different nature of the flow regime changes, our meta-analysis showed significant effects of human-driven water stress, such as significant increases in algal biomass and metabolism and reduced invertebrate richness, abundance and density and organic matter decomposition. Water stress also significantly decreased phosphate concentration and increased the concentration of pharmaceutical compounds. The magnitude of significant effects was dependent on climate, rainfall regime, period of the year, river size and type of water stress. Among the different causes of water stress, flow regulation by dams produced the strongest effects, followed by water abstraction and channelization.

10.
Sci Rep ; 8(1): 3015, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445143

RESUMO

Despite the increasing understanding of the magnitude and drivers of carbon gas emissions from inland waters, the relevance of water fluctuation and associated drying on their dynamics is rarely addressed. Here, we quantified CO2 and CH4 fluxes from a set of temporary ponds across seasons. The ponds were in all occasion net CO2 emitters irrespective of the presence or absence of water. While the CO2 fluxes were in the upper range of emissions for freshwater lentic systems, CH4 fluxes were mostly undetectable. Dry habitats substantially contributed to these emissions and were always a source of CO2, whereas inundated habitats acted either as a source or a sink of atmospheric CO2 along the year. Higher concentrations of coloured and humic organic matter in water and sediment were linked to higher CO2 emissions. Composition of the sediment microbial community was related both to dissolved organic matter concentration and composition, but we did not find a direct link with CO2 fluxes. The presence of methanogenic archaea in most ponds suggested the potential for episodic CH4 production and emission. Our results highlight the need for spatially and temporally inclusive approaches that consider the dry phases and habitats to characterize carbon cycling in temporary systems.

11.
Chemosphere ; 196: 115-119, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29294424

RESUMO

This study was aimed to determine the abundance of four antibiotic resistance genes (blaTEM, ermB, qnrS and sulI), as well as bacterial community composition associated with the intestinal mucus of wild freshwater fish species collected from the Foix and La Llosa del Cavall reservoirs, which represent ecosystems with high and low anthropogenic disturbance, respectively. Water and sediments from these reservoirs were also collected and analyzed to determine the pollution level by antibiotics. The blaTEM gene was only detected in brown trout and Ebro barbel, which were collected from La Llosa del Cavall reservoir. In contrast, the sulI and qnrS genes were only detected in common carp, which were collected from the Foix reservoir. Although the ermB gene was also detected in common carp, the values were below the limit of quantification. Likewise, water and sediment samples from the Foix reservoir had higher concentrations and more classes of antibiotics than those from La Llosa del Cavall. Pyrosequencing analysis of 16S rRNA genes revealed significant differences in bacterial communities associated with the intestinal mucus of fish species. Therefore, these findings suggest that anthropogenic activities are not only increasing the pollution of aquatic environments, but also contributing to the emergence and spread of antibiotic resistance in organisms that inhabit such environments.


Assuntos
Antibacterianos/análise , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Peixes/microbiologia , beta-Lactamases/genética , Amida Sintases/genética , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Genes Bacterianos/genética , Metiltransferases/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Rios/química , Rios/microbiologia
12.
Microb Ecol ; 74(4): 776-787, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28508926

RESUMO

Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.


Assuntos
Archaea/fisiologia , Sedimentos Geológicos/microbiologia , Microbiota , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Archaea/classificação , Archaea/genética , DNA Arqueal/genética , Lagos/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
13.
Environ Sci Technol ; 50(20): 10780-10794, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27597444

RESUMO

Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.


Assuntos
Ecossistema , Lagos , Monitoramento Ambiental , Recreação
14.
Chemosphere ; 161: 470-474, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27459158

RESUMO

We used a short-term microcosm approach to investigate the influence of two different subinhibitory concentrations of ciprofloxacin (0.01 and 0.1 µg/ml) on both the abundance of a plasmid-mediated quinolone resistance determinant (qnrS) and the structure and composition of bacterial communities from impaired and pristine water supply reservoirs. The results showed that the abundance of the qnrS gene increases in water samples exposed to both subinhibitory concentrations of ciprofloxacin, especially in water samples from La Llosa del Cavall, which represents the pristine system. Subinhibitory ciprofloxacin concentrations also induced changes in bacterial community composition as indicated by the relative abundances of each operational taxonomic unit (OTU) across treatments. Therefore, our findings may be of significant importance because subinhibitory ciprofloxacin concentrations may promote antibiotic resistance and affect bacterial community composition in environmental settings.


Assuntos
Ciprofloxacina/análise , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Consórcios Microbianos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Abastecimento de Água , Ciprofloxacina/toxicidade , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Consórcios Microbianos/genética , Testes de Sensibilidade Microbiana , Plasmídeos , RNA Ribossômico 16S/genética , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Abastecimento de Água/normas
15.
Sci Total Environ ; 520: 241-52, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25817761

RESUMO

Starting from measured river concentrations, emission factors of 158 organic compounds out of 199 analyzed belonging to different groups of priority and emerging contaminants [pesticides (25), pharmaceuticals and hormones (81), perfluoroalkyl substances (PFASs) (18), industrial compounds (12), drugs of abuse (8) and personal care products (14)] have been estimated by inverse modeling. The Llobregat river was taken as case study representative of Mediterranean rivers. Industrial compounds and pharmaceuticals are the dominant groups (range of 10(4) mg·1000 inhab(-1)·d(-1)). Personal care products, pesticides, PFASs and illegal drugs showed a load approximately one order of magnitude smaller. Considered on a single compound basis industrial compounds still dominate (range of ca. 10(3) mg·1000 inhab(-1)·d(-1)) over other classes. Generally, the results are within the range when compared to previously published estimations for other river basins. River attenuation expressed as the percentage fraction of microcontaminants eliminated was quantified. On average they were around 60-70% of the amount discharged for all classes, except for PFASs, that are poorly eliminated (ca. 20% on average). Uncertainties associated with the calculated emissions have been estimated by Monte-Carlo methods (15,000 runs) and typically show coefficients of variation of ca. 120%. Sensitivities associated with the various variables involved in the calculations (river discharge, river length, concentration, elimination constant, hydraulic travel time and river velocity) have been assessed as well. For the intervals chosen for the different variables, all show sensitivities exceeding unity (1.14 to 3.43), tending to amplify the variation of the emission. River velocity and basin length showed the highest sensitivity value. Even considering the limitations of the approach used, inverse modeling can provide a useful tool for management purposes facilitating the quantification of release rates of chemicals into the aquatic environment.


Assuntos
Monitoramento Ambiental/métodos , Modelos Químicos , Compostos Orgânicos/análise , Rios/química , Poluentes Químicos da Água/análise , Praguicidas/análise , Espanha , Movimentos da Água , Poluição Química da Água/estatística & dados numéricos
16.
Chemosphere ; 111: 120-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997908

RESUMO

Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) method with the trilinearity constraint is proposed for the analysis of excitation-emission fluorescence data from Dissolved Organic Matter (DOM) in fresh water natural systems, and the results obtained are compared with those obtained with PARAFAC. The effects of different number of components and constraints on the stability of the proposed models are compared. MCR-ALS is shown to be an effective way to characterize and resolve DOM sources in natural fresh water systems from EEM data, with good correlation with experimentally measured DOM concentration values. MATLAB georeferenced mapping is used to illustrate the geographical distribution of resolved DOM contributions. MCR-ALS resolved EEM spectra are used to recognize the corresponding chemical groups assigned to possible DOM sources. Relationships between human activities and the environmental situation of the river system are discussed from these possible DOM sources.


Assuntos
Água Doce/química , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Análise dos Mínimos Quadrados , Modelos Teóricos , Rios/química
17.
Sci Total Environ ; 470-471: 567-77, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176705

RESUMO

Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning.


Assuntos
Conservação dos Recursos Naturais/métodos , Abastecimento de Água/estatística & dados numéricos , Mudança Climática , Região do Mediterrâneo , Espanha , Movimentos da Água
18.
J Hazard Mater ; 263 Pt 1: 207-13, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24035509

RESUMO

The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results.


Assuntos
Anti-Inflamatórios não Esteroides/análise , Diclofenaco/análise , Monitoramento Ambiental , Modelos Teóricos , Rios/química , Poluentes Químicos da Água/análise , Espanha
19.
J Environ Manage ; 128: 283-91, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23770379

RESUMO

Water and sediment quality in North Patagonia's large, oligotrophic lakes are expected to suffer as native forest continues to be fragmented and degraded by its conversion to cropping and pasture land uses. These changes in land use are expected to increase diffuse nutrient loads to the region's lakes. In addition, these lakes are home to the world's second largest salmon aquaculture industry which provides additional point sources of nutrients within the lakes. We studied the combined influences of land use change and salmon farming on the nutrient concentrations in a North Patagonian lake (Lake Rupanco, 233 km(2) water surface, 163 m average depth) in four sub-watersheds ranging in disturbance from near-pristine forest to 53% converted to cropping and pasture. Nitrogen exports from the tributary sub-watersheds increased from 33 kg TN/km(2)/y to 621 kg TN/km(2)/y as the proportion of crop and pasture land increased. The combined nutrient load from land use change and salmon farming has led to significant differences in the nitrogen concentrations of the lake's water column and sediments in the near-shore zones across the lake. Total nitrogen concentrations in the sediments varied from 37 ± 18 mg/kg in near-pristine sub-watersheds without salmon farming to 6400 ± 698 mg/kg where the sub-watershed was dominated by crop and pasture lands combined with the presence of salmon farming. These results demonstrate the importance of considering the impacts of both salmon farming and land use on water and sediment quality for future environmental planning, management and decision making.


Assuntos
Aquicultura , Sedimentos Geológicos , Lagos , Qualidade da Água , Agricultura , Animais , Chile , Meio Ambiente , Nitrogênio/análise , Rios , Salmão
20.
Sci Total Environ ; 456-457: 161-70, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23591067

RESUMO

Antibiotic resistance represents a growing global health concern due to the overuse and misuse of antibiotics. There is, however, little information about how the selective pressure of clinical antibiotic usage can affect environmental communities in aquatic ecosystems and which bacterial groups might be responsible for dissemination of antibiotic resistance genes (ARGs) into the environment. In this study, chemical and biological characterization of water and sediments from three water supply reservoirs subjected to a wide pollution gradient allowed to draw an accurate picture of the concentration of antibiotics and prevalence of ARGs, in order to evaluate the potential role of ARGs in shaping bacterial communities, and to identify the bacterial groups most probably carrying and disseminating ARGs. Results showed significant correlation between the presence of ARG conferring resistance to macrolides and the composition of bacterial communities, suggesting that antibiotic pollution and the spreading of ARG might play a role in the conformation of bacterial communities in reservoirs. Results also pointed out the bacterial groups Actinobacteria and Firmicutes as the ones probably carrying and disseminating ARGs. The potential effect of antibiotic pollution and the presence of ARGs on the composition of bacterial communities in lacustrine ecosystems prompt the fundamental question about potential effects on bacterial-related ecosystem services supplied by lakes and reservoirs.


Assuntos
Antibacterianos/análise , Farmacorresistência Bacteriana , Microbiologia da Água/normas , Poluentes Químicos da Água/análise , Recursos Hídricos/normas , Abastecimento de Água/normas , Farmacorresistência Bacteriana/genética , Monitoramento Ambiental , Genes Bacterianos , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...