Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 745: 140899, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32721614

RESUMO

Marine aerosol is a chemical complex system formed by inorganic salts and organic matter, together with airborne particulate matter from the surrounding environment. The primary particles transported in the marine aerosol can experiment different chemical reactions in the atmosphere, promoting the so-called Secondary Marine Aerosol particles. These kinds of particles (nitrates, sulfates, chlorides etc.), together with the natural crustal or mineral particles and the metallic airborne particulate matter emitted by anthropogenic sources (road traffic, industry, etc.) form clusters which then can be deposited on building materials from a specific construction following dry deposition processes. Apart from that, the acid aerosols (e.g. CO2, SO2, NOX, etc.) present in urban-industrial environments, coming also from anthropogenic sources, can be deposited in the buildings following dry or a wet deposition mechanisms. The interactions of these natural and anthropogenic stressors with building materials can promote different kind of pathologies. In this overview, the negative influence of different marine environments (direct or diffuse influence), with or without the influence of an urban-industrial area (direct or diffuse), on the conservation state of historical constructions including a wide variety of building materials (sandstones, limestones, artificial stones, bricks, plasters, cementitious materials, etc.) is presented.

2.
Chemosphere ; 242: 125249, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896203

RESUMO

Machu Picchu is an archaeological Inca sanctuary from the 15th century, located 2430 m above the sea level in the Cusco Region, Peru. In 1983, it was declared World Heritage Site by UNESCO. The surroundings and soils from the entire archaeological site are carefully preserved together with its grass parks. Due to the importance of the archaeological city and its surroundings, the Decentralized Culture Directorate of Cusco-PAN Machu Picchu decided to carry out a careful monitoring study in order to determine the ecological status of the soils. In this work, elemental and molecular characterization of 17 soils collected along the entire park was performed by means of X-ray Diffraction (XRD) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after acidic digestion assisted by microwave energy. Thanks to the combination of these analytical techniques, it was possible to obtain the mineral composition and metal concentrations of all soils from these 17 sampling points. Finally, different statistical treatments were carried out in order to confirm the ecological status of the different sampling points from Machu Picchu archaeological site concluding that soils are not impacted.


Assuntos
Monitoramento Ambiental , Metais/análise , Poluentes do Solo/análise , Cidades , Metais Pesados/análise , Peru , Solo/química , Difração de Raios X
3.
Anal Bioanal Chem ; 411(28): 7585-7593, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31701206

RESUMO

Most of the wall paintings from Pompeii are decorated with red and yellow colors but the thermal impact of 79 AD Mount Vesuvius eruption promoted the partial transformation of some yellow-painted areas into red. The aim of this research is to develop a quantitative Raman imaging methodology to relate the transformation percentage of yellow ochre (goethite, α-FeOOH) into red color (hematite, α-Fe2O3) depending on the temperature, in order to apply it and estimate the temperature at which the pyroclastic flow impacted the walls of Pompeii. To model the thermal impact that took place in the year 79 AD, nine wall painting fragments recovered in the archeological site of Pompeii and which include yellow ochre pigment were subjected to thermal ageing experiments (exposition to temperatures from 200 to 400 °C every 25 °C). Before the experiments, elemental information of the fragments was obtained by micro-energy dispersive X-ray fluorescence (µ-ED-XRF). The fragments were characterized before and after the exposition using Raman microscopy to monitor the transformation degree from yellow to red. The quantitative Raman imaging methodology was developed and validated using synthetic pellets of goethite and hematite standards. The results showed almost no transformation (0.5% ± 0.4) at 200 °C. However, at 225 °C, some color transformation (26.9% ± 2.8) was observed. The most remarkable color change was detected at temperatures between 250 °C (transformation of 46.7% ± 1.7) and 275 °C (transformation of 101.1% ± 1.2). At this last temperature, the transformation is totally completed since from 275 to 400 °C the transformation percentage remained constant.

4.
Sci Total Environ ; 692: 23-31, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31336297

RESUMO

Machu Picchu citadel is the main archaeological Inca sanctuary widely known around the world, and a World Heritage Site of high cultural and natural value. For its construction a whitish granitic rock, extracted from the "Vilcapampa or Vilcabamba" batholith formation was used. During time, some of the granitic rocks from the natural stonewalls of the Meditation area of the Archaeological Park were restored. For the restoration works done in the 50s' a specific lime mortar called Clarobesa was used. After the inclusion of this joining mortar, many efflorescences are nowadays visible in the mortar itself and on the surface of the edges of the annexed rocks. To evaluate the possible impact of these salts crystallizations in the conservation state of these natural stonewalls, a multi-analytical methodology was designed and applied. With a combination of non-invasive and destructive techniques such as X-ray Diffraction, Raman microscopy, Scanning Electron Microscope coupled to an Energy Dispersive X-ray Spectrometer and ion chromatography, the mineralogical composition and the nature/concentration of the soluble salts present in the Clarobesa mortar was determined. The experimental results suggest that Clarobesa mortar is a hydraulic lime mortar. The study of salts crystallizations by Raman microscopy allowed identifying the presence of calcium sulfates with different hydration waters and also nitrates. In some samples, the concentration of sulfates was high, reaching values up to 10% w/w. Although the concentration of nitrates is not extremely high, a clear contribution of ammonium nitrates coming from the decomposition of the nearby vegetation was assessed. Since the Clarobesa mortar can be considered an important input of ions that can migrate to the joined granitic rocks, in the future, it will be recommendable to monitor possible changes in the conservation state of the joined rocks.

5.
Sci Total Environ ; 654: 1379-1388, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30527887

RESUMO

Machu Picchu Inca sanctuary (Cusco Region, Peru) was constructed on a granitic plateau, better known as Vilcabamba batholith. One of the most important carved granitic rocks from this archaeological site is the Sacred Rock, used by Inca citizens for religious rituals. Due to the location and climatic conditions, different rocks from this archaeological site are affected by biocolonizations. Concretely, the Sacred Rock shows flaking and delamination problems. In this work, a non-destructive multi analytical methodology has been applied to determine the possible role of the biodeteriogens, forming the biological patina on the Sacred Rock, in the previously mentioned conservation problems. Before characterizing the biological patina, a mineralogical characterization of the granitic substrate was conducted using X-ray Diffraction, Raman microscopy (RM) and micro energy dispersive X-ray fluorescence spectrometry. For the identification of the main biodeteriogens in the biofilm, Phase Contrast Microscopy was used. RM also allowed to determine the distribution (imaging) and the penetration (depth profiling) of the biogenic pigments present in the biopatina. Thanks to this study, it was possible to asses that some colonizers are growing on inner areas of the rock, reinforcing their possible assistance in the delamination. Moreover, the in-depth distribution of a wide variety of carotenoids in the patinas allowed to approach the penetration ability of the main biodeteriogens and the diffusion of these biogenic pigments to the inner areas of the rocky substrate.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cianobactérias/fisiologia , Líquens/fisiologia , Microalgas/fisiologia , Arqueologia , Cianobactérias/isolamento & purificação , Líquens/isolamento & purificação , Microalgas/isolamento & purificação , Microscopia Óptica não Linear , Peru , Pigmentos Biológicos/classificação , Dióxido de Silício , Espectrometria por Raios X , Análise Espectral Raman , Difração de Raios X
6.
Sci Total Environ ; 626: 441-450, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358137

RESUMO

In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (µ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain).


Assuntos
Poluentes Atmosféricos/análise , Biofilmes/efeitos dos fármacos , Biomarcadores Ambientais/fisiologia , Monitoramento Ambiental/métodos , Metais/análise , Poluição Ambiental , Espanha
7.
Sci Rep ; 8(1): 1613, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371645

RESUMO

The walls and mural paintings of Pompeii exposed directly to the rainfalls are the most impacted in view of the observed decay. However, there are also wall paintings in protected rooms showing evidences of decaying. The aim of this research was to study the salts formed in such protected wall paintings only by non-invasive and in-situ Raman spectroscopy to understand their decaying processes. The perystile of the House of the Gilded Cupids (Regio VI, Insula 16), one of the most important houses of Pompeii was studied. Although an exhaustive restoration was carried out in 2004, a new conservation treatment was needed in 2013 and only two years later, extensive crystallizations of soluble salts were again threatening several of the restored surfaces, thus, the presence of an unsolved degradation pathway was deduced. Thank to the proposed methodology, it was pointed out that the key is the acidified rainfall impact in the non-protected backside of the walls containing the wall paintings. Thus, a new concept in the preservation of the houses of Pompeii is provided, in which the need of the protection of those walls from both sides is suggested to avoid the movement of water through the pores of the walls.

8.
Sci Total Environ ; 615: 691-697, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28992496

RESUMO

Marine aerosol is a complex inorganic and organic chemistry system which contains several salts, mainly forming different type of salt clusters. Different meteorological parameters have a key role in the formation of these aggregates. The relative humidity (%RH), temperature, CO, SO2 and NOx levels and even the O3 levels can promote different chemical reactions giving rise to salt clusters with different morphology and sizes. Sulfates, nitrates and chlorides and even mixed chlorosulfates or nitrosulfates are the final compounds which can be found in environments with a direct influence of marine aerosol. In order to collect and analyze these types of compounds, the use of adequate samplers is crucial. In this work, salt clusters were collected thanks to the use of a self-made passive sampler (SMPS) installed in a 20th century historic building (Punta Begoña Galleries, Getxo, Basque Country, Spain) which is surrounded by a beach and a sportive port. These salt clusters were finally analyzed directly by micro-Raman spectroscopy and Scanning Electron microscopy coupled to Energy Dispersive X-ray spectrometry (SEM-EDS).

9.
Environ Sci Pollut Res Int ; 24(24): 19599-19608, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28681298

RESUMO

This work was focused on the study of the biodegradation processes jeopardizing a mural painting conserved in the basement of Ariadne House (archaeological site of Pompeii, Italy). The fresco stood out for its peculiar state of preservation: the upper part, recovered in 1988, was just barely colonized by microorganisms. On the contrary, the lower part (excavated in 2005) was almost completely covered by extensive biological patinas. The genomic characterization carried out by polymerase chain reaction (PCR) highlighted the presence of seven different fungi strains on the mural surface. Beside, in situ and laboratory analyses were performed with the purpose of identifying the causes of the heterogeneous spatial distribution of the biopatinas. The in situ Raman spectroscopy and energy dispersive X-ray fluorescence (ED-XRF) spectroscopy measurements excluded any link between the heterogeneous colonization and the original materials present in the wall. On the other side, X-ray diffraction (XRD) and scanning electron microscopy (SEM) on microsamples proved the presence of a thin volcanic material layer overlying the lower part of the fresco. Considering that most of the biofilms of the studied mural painting only growth over these residues, it was confirmed the role of volcanic material as a suitable support for biological colonization. Thanks to the obtained results, this research helped to understand more in depth an important degradation pathway threatening the artworks from one of the most important archaeological sites in the world.


Assuntos
Arqueologia/métodos , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Fungos/crescimento & desenvolvimento , Pinturas , Erupções Vulcânicas , Itália , Pintura/microbiologia , Reação em Cadeia da Polimerase , Análise Espectral Raman
10.
Anal Chem ; 89(16): 8565-8573, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28703574

RESUMO

Imaging mass spectrometry (IMS) is quickly becoming a technique of reference to visualize the lipid distribution in tissue sections. Still, many questions remain open, and data analysis has to be optimized to avoid interpretation pitfalls. Here we analyze how the variation on the [Na+]/[K+] relative abundance affects the detection of lipids between sections of spinal cord of (uninjured) control rats and of models of spinal cord demyelination and traumatic contusion injury. The [M + Na]+/[M + K]+ adducts ratio remained approximately constant along transversal and longitudinal sections of spinal cord from control animals, but it strongly changed depending on the type of lesion. A substantial increase in the abundance of [M + Na]+ adducts was observed in samples from spinal cord with demyelination, while the intensity of the [M + K]+ adducts was stronger in those sections from mechanically injured spinal cords. Such changes masked the modifications in the lipid profile due to the injury and only after summing the signal intensity of all adducts and corresponding monoprotonated molecular ions of each detected lipid in a single variable, it was possible to unveil the real changes in the lipid profile due to the lesion. Such lipids included glycerophospholipids (both diacyl and aryl-acyl), sphingolipids, and nonpolar lipids (diacyl and triacylglycerols), which are the main lipid classes detected in positive-ion mode. Furthermore, the results demonstrate the sensitivity of the technique toward modification in tissue homeostasis and that the [M + Na]+/[M + K]+ ratio may be used to detect alterations in such homeostasis.


Assuntos
Modelos Animais de Doenças , Lipídeos/análise , Potássio/química , Sódio/química , Animais , Cátions/química , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Traumatismos da Medula Espinal
11.
Anal Bioanal Chem ; 409(15): 3853-3860, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28389921

RESUMO

Most of the magnificent wall paintings from the ancient city of Pompeii are decorated with red and yellow colors coming from the ochre pigments used. The thermal impact of the pyroclastic flow from the eruption of Vesuvius, in AD 79, promoted the transformation of some yellow painted areas to red. In this work, original red ochre, original yellow ochre, and transformed yellow ochre (nowadays showing a red color) of wall paintings from Pompeian houses (House of Marcus Lucretius and House of Gilded Cupids) were analyzed by means of a handheld energy-dispersive X-ray fluorescence spectrometer to develop a fast method that allows chemical differentiation of the original red ochre and the transformed yellow ochre. Principal component analysis of the multivariate obtained data showed that arsenic is the tracer element to distinguish between both red colored ochres. Moreover, Pompeian raw red and yellow ochre pigments recovered from the burial were analyzed in the laboratory with use of a benchtop energy-dispersive X-ray fluorescence spectrometer to confirm the elemental composition and the conclusions drawn from the in situ analysis according to the yellow ochre pigment transformation in real Pompeian wall paintings.

12.
Anal Bioanal Chem ; 409(8): 2221-2228, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28084510

RESUMO

The study and characterization of old artifacts such as pigments requires the use of techniques that need a small amount of sample to perform the analysis because of the high value of these samples. In recent years, organic molecules such as anthraquinone dyes have been identified by surface-enhanced Raman spectroscopy (SERS). However, different sample treatments must be applied to isolate the organic dye from the mordant, which produces great fluorescence in the Raman measurements. In this work, optimization of sample treatment for the SERS analysis of anthraquinone dyes was performed. Sample mass, the organic solvent, and its volume were optimized and different slide materials and excitation lasers were compared to choose the best conditions for the identification of the dyes. The optimization of sample treatment resulted in 5 mg of sample as the optimum amount. Further, two consecutive extractions with 0.5 mL of ethyl acetate was the best option for the extraction of the dye. A quartz slide was used instead of a glass slide to reduce background signal, and an excitation laser of 532 nm offers better results than one of 785 nm. The optimized method was applied to the characterization of the dyes used in Pompeian pink and purple lake pigments. Alizarin and purpurin anthraquinone dyes, obtained from madder lake, were identified as the organic colorants. The SERS results were confirmed by those obtained by means of UV-visible spectroscopy. Graphical Abstract ᅟ.

13.
Anal Chem ; 88(12): 6395-402, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27189380

RESUMO

Because of the fact that pigments are not ubiquitous in the archeological record, the application of noninvasive analytical methods is a necessity. In this work, pink and purple lake pigments recovered from the excavations of the ancient city of Pompeii (Campania, Italy) and preserved in their original bowls at the Naples National Archaeological Museum (Italy) were analyzed to characterize the composition of their inorganic binders (mordants). In situ preliminary analyses using a hand-held energy dispersive X-ray fluorescence spectrometer (HH-ED-XRF) allowed us to determine the use of an aluminosilicate enriched in Cu and Pb. Scanning electron microscopy coupled to energy dispersive X-ray spectrometry (SEM-EDS) and benchtop ED-XRF analyses confirmed these results, while inductively coupled plasma mass spectrometry (ICPMS) allowed one to determine the concentration of major, minor, and trace elements. The use of other techniques such as X-ray diffraction (XRD), and micro-Raman and infrared spectroscopies allowed one to characterize the pigments at the molecular level. The high concentration of Cu detected in the pigments (1228-12937 µg g(-1)) could be related to the addition of Cu salts to obtain the desired final hue. The concentrations of Pb (987-2083 µg g(-1)) was also remarkable. Lead isotopic ratio analysis ((206)Pb/(207)Pb) suggested a possible origin related to the leaching of the ancient lead pipes from Pompeii and the subsequent transfer to the buried pigments or to the inorganic binder. Molecular analysis also showed that the binder is composed of an allophane-like clay. Moreover, it was possible to determine that to obtain the final purple hue of a specific pigment, Pompeian blue pigment was also mixed into the dyed clay.

14.
Sci Total Environ ; 550: 285-296, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26820932

RESUMO

Dry deposition is one of the most dangerous processes that can take place in the environment where the compounds that are suspended in the atmosphere can react directly on different surrounding materials, promoting decay processes. Usually this process is related with industrial/urban fog and/or marine aerosol in the coastal areas. Particularly, marine aerosol transports different types of salts which can be deposited on building materials and by dry deposition promotes different decay pathways. A new analytical methodology based on the combined use of Raman Spectroscopy and SEM-EDS (point-by-point and imaging) was applied. For that purpose, firstly evaporated seawater (presence of Primary Marine Aerosol (PMA)) was analyzed. After that, using a self-made passive sampler (SMPS), different suspended particles coming from marine aerosol (transformed particles in the atmosphere (Secondary Marine Aerosol (SMA)) and metallic airborne particulate matter coming from anthropogenic sources, were analyzed. Finally in order to observe if SMA and metallic particles identified in the SMPS can be deposited on a building, sandstone samples from La Galea Fortress (Getxo, north of Spain) located in front of the sea and in the place where the passive sampler was mounted were analyzed.

15.
Sci Total Environ ; 542(Pt A): 716-27, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546767

RESUMO

Rainwater is one of the main pollution tracers around the world. There are many reasons that can explain the presence of high concentrations of certain hazardous elements (HEs) in the rainwater (traffic, marine port activities, industry, etc.). In this work, rainwater samples were collected at six different locations in the Metropolitan Bilbao (Basque Country, north of Spain) during November 2014. HE concentrations were determined by means of inductively coupled plasma mass spectrometry (ICP-MS) and anions by ion chromatography. The pH and redox potential values on these samples were also assessed. According to the obtained results, different trends along the estuary of Bilbao have been observed. To corroborate some hypothesis, thermodynamic simulations and correlation analyses were also carried out using quantitative data. These trends are closely related to the surrounding pollution and marine influence. Finally, in order to ascertain the influence of the Metropolitan Bilbao rainwater on buildings materials, a recent construction was characterized. Using techniques such as Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM­EDS) and Raman Spectroscopy, different types of sulfates and nitrates were observed.


Assuntos
Materiais de Construção/análise , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Chuva/química , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...