Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581668

RESUMO

Establishment of arbuscular mycorrhiza (AM) relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short chain chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase (LysM RLK) SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF), however its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization, and carry mutations in LysM1 and 2 respectively, have similar LCO binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter (Genetically Encoded Ca2+ indicators, GECO), showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short chain COs also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.

2.
Nat Plants ; 9(10): 1675-1687, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653338

RESUMO

Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.


Assuntos
Cucurbitaceae , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Etilenos/metabolismo , Cucurbitaceae/genética , Flores , Regulação da Expressão Gênica de Plantas
3.
Science ; 378(6619): 543-549, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378960

RESUMO

Male and female unisexual flowers evolved from hermaphroditic ancestors, and control of flower sex is useful for plant breeding. We isolated a female-to-male sex transition mutant in melon and identified the causal gene as the carpel identity gene <i>CRABS CLAW (CRC)</i>. We show that the master regulator of sex determination in cucurbits, the transcription factor <i>WIP1</i> whose expression orchestrates male flower development, recruits the corepressor TOPLESS to the <i>CRC</i> promoter to suppress its expression through histone deacetylation. Impairing TOPLESS-WIP1 physical interaction leads to <i>CRC</i> expression, carpel determination, and consequently the expression of the stamina inhibitor, the aminocyclopropane-1-carboxylic acid synthase 7 (<i>CmACS7</i>), leading to female flower development. Our findings suggest that sex genes evolved to interfere with flower meristematic function, leading to unisexual flower development.


Assuntos
Cucurbitaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Processos de Determinação Sexual , Flores/genética , Flores/crescimento & desenvolvimento , Meristema/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/crescimento & desenvolvimento
4.
J Exp Bot ; 72(20): 6920-6932, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34369570

RESUMO

Fruit maturation and softening are critical traits that control fruit shelf-life. In the climacteric tomato (Solanum lycopersicum L.) fruit, ethylene plays a key role in fruit ripening and softening. We characterized two related proteins with contrasting impact on ethylene production, ACC oxidase 1 (SlACO1) and SlE8. We found SlACO1 and SlE8 to be highly expressed during fruit ripening. To identify loss-of-function alleles, we analysed the tomato genetic diversity but we did not find any natural mutations impairing the function of these proteins. We also found the two loci evolving under purifying selection. To engineer hypomorphic alleles, we used TILLING (target-induced local lesions in genomes) to screen a tomato ethylmethane sulfonate-mutagenized population. We found 13 mutants that we phenotyped for ethylene production, shelf-life, firmness, conductivity, and soluble solid content in tomato fruits. The data demonstrated that slaco1-1 and slaco1-2 alleles could be used to improve fruit shelf-life, and that sle8-1 and sle8-2 alleles could be used to accelerate ripening. This study highlights further the importance of SlACO1 and SlE8 in ethylene production in tomato fruit and how they might be used for post-harvest fruit preservation or speeding up fruit maturation.


Assuntos
Solanum lycopersicum , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Mol Plant ; 14(7): 1185-1198, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33964458

RESUMO

Fruit set is inhibited by adverse temperatures, with consequences on yield. We isolated a tomato mutant producing fruits under non-permissive hot temperatures and identified the causal gene as SlHB15A, belonging to class III homeodomain leucine-zipper transcription factors. SlHB15A loss-of-function mutants display aberrant ovule development that mimics transcriptional changes occurring in fertilized ovules and leads to parthenocarpic fruit set under optimal and non-permissive temperatures, in field and greenhouse conditions. Under cold growing conditions, SlHB15A is subjected to conditional haploinsufficiency and recessive dosage sensitivity controlled by microRNA 166 (miR166). Knockdown of SlHB15A alleles by miR166 leads to a continuum of aberrant ovules correlating with parthenocarpic fruit set. Consistent with this, plants harboring an Slhb15a-miRNA166-resistant allele developed normal ovules and were unable to set parthenocarpic fruit under cold conditions. DNA affinity purification sequencing and RNA-sequencing analyses revealed that SlHB15A is a bifunctional transcription factor expressed in the ovule integument. SlHB15A binds to the promoters of auxin-related genes to repress auxin signaling and to the promoters of ethylene-related genes to activate their expression. A survey of tomato genetic biodiversity identified pat and pat-1, two historical parthenocarpic mutants, as alleles of SlHB15A. Taken together, our findings demonstrate the role of SlHB15A as a sentinel to prevent fruit set in the absence of fertilization and provide a mean to enhance fruiting under extreme temperatures.


Assuntos
MicroRNAs/fisiologia , Proteínas de Plantas/fisiologia , RNA de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Perfilação da Expressão Gênica , Zíper de Leucina , Solanum lycopersicum/genética , Partenogênese/genética , Proteínas de Plantas/genética
6.
Plant Sci ; 242: 195-202, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566837

RESUMO

Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-ß-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.


Assuntos
Parede Celular/genética , Frutas/genética , Mutação , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Parede Celular/metabolismo , Cristalografia por Raios X , Frutas/metabolismo , Frutas/fisiologia , Glucana 1,4-beta-Glucosidase/metabolismo , Glucanos/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Modelos Moleculares , Mutagênese , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Ácidos Urônicos/metabolismo , Xilanos/metabolismo
7.
Nat Genet ; 44(12): 1393-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143603

RESUMO

The transition to flowering is a major determinant of plant architecture, and variation in the timing of flowering can have profound effects on inflorescence architecture, flower production and yield. Here, we show that the tomato mutant terminating flower (tmf) flowers early and converts the multiflowered inflorescence into a solitary flower as a result of precocious activation of a conserved floral specification complex encoded by ANANTHA (AN) and FALSIFLORA (FA). Without TMF, the coordinated flowering process is disrupted, causing floral identity genes, such as AN and members of the SEPALLATA (SEP) family, to activate precociously, while the expression of flowering transition genes, such as FRUITFULL (FUL), is delayed. Indeed, driving AN expression precociously is sufficient to cause early flowering, and this expression transforms multiflowered inflorescences into normal solitary flowers resembling those of the Solanaceae species petunia and tobacco. Thus, by timing AN activation, TMF synchronizes flower formation with the gradual reproductive transition, which, in turn, has a key role in determining simple versus complex inflorescences.


Assuntos
Flores/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Meristema/genética , Mutação , Reprodução/genética
8.
Phytochemistry ; 79: 78-86, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22595361

RESUMO

Targeting Induced Local Lesions IN Genomes (TILLING) combines chemical mutagenesis with high throughput screening to allow the generation of alleles of selected genes. In this study, TILLING has been applied to produce a series of mutations in genes encoding essential components of the tomato light signal transduction pathway in an attempt to enhance fruit nutritional quality. Point mutations to DEETIOLATED1 (DET1), which is responsible for the high pigment2 (hp2) tomato mutant, resulted in elevated levels of both carotenoid and phenylpropanoid phytonutrients in ripe fruit, whilst immature fruit showed increased chlorophyll content, photosynthetic capacity and altered fruit morphology. Furthermore, genotypes with mutations to the UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1), COP1 and COP1like were also characterised. These genotypes largely did not display phenotypes characteristic of mutation to light signalling components but their characterisation has enabled interrogation of structure function relationships of the mutated genes.


Assuntos
Alelos , Genes de Plantas/genética , Genômica , Ensaios de Triagem em Larga Escala/métodos , Luz , Mutagênese/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Solanum lycopersicum/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Metanossulfonato de Etila/farmacologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/efeitos da radiação , Solanum lycopersicum/citologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos da radiação , Fenóis/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Mutação Puntual , Análise de Componente Principal
9.
Plant J ; 67(4): 701-14, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554455

RESUMO

In angiosperms, shoot branching greatly determines overall plant architecture and affects fundamental aspects of plant life. Branching patterns are determined by genetic pathways conserved widely across angiosperms. In Arabidopsis thaliana (Brassicaceae, Rosidae) BRANCHED1 (BRC1) plays a central role in this process, acting locally to arrest axillary bud growth. In tomato (Solanum lycopersicum, Solanaceae, Asteridae) we have identified two BRC1-like paralogues, SlBRC1a and SlBRC1b. These genes are expressed in arrested axillary buds and both are down-regulated upon bud activation, although SlBRC1a is transcribed at much lower levels than SlBRC1b. Alternative splicing of SlBRC1a renders two transcripts that encode two BRC1-like proteins with different C-t domains due to a 3'-terminal frameshift. The phenotype of loss-of-function lines suggests that SlBRC1b has retained the ancestral role of BRC1 in shoot branch suppression. We have isolated the BRC1a and BRC1b genes of other Solanum species and have studied their evolution rates across the lineages. These studies indicate that, after duplication of an ancestral BRC1-like gene, BRC1b genes continued to evolve under a strong purifying selection that was consistent with the conserved function of SlBRC1b in shoot branching control. In contrast, the coding sequences of Solanum BRC1a genes have evolved at a higher evolution rate. Branch-site tests indicate that this difference does not reflect relaxation but rather positive selective pressure for adaptation.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Sequência de Aminoácidos , Mapeamento Cromossômico , Evolução Molecular , Duplicação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/ultraestrutura , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/ultraestrutura , Mutação Puntual , RNA Mensageiro/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...