Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0012924, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470030

RESUMO

Archaeal viruses are among the most enigmatic members of the virosphere, and their diverse morphologies raise many questions about their infection mechanisms. The study of molecular mechanisms underlying virus-host interactions hinges upon robust model organisms with a system for gene expression and deletion. Currently, there are only a limited number of archaea that have associated viruses and have a well-developed genetic system. Here, we report the development of a genetic system for the euryarchaeon Haloferax gibbonsii LR2-5. This strain can be infected by multiple viruses and is a model for the study of virus-host interactions. We created a Hfx. gibbonsii LR2-5 ∆pyrE strain, resulting in uracil auxotrophy, which could be used as a selection marker. An expression plasmid carrying a pyrE gene from the well-established Haloferax volcanii system was tested for functionality. Expression of a GFP-MinD fusion under a tryptophan inducible promoter was fully functional and showed similar cellular localization as in Hfx. volcanii. Thus, the plasmids of the Hfx. volcanii system can be used directly for the Hfx. gibbonsii LR2-5 genetic system, facilitating the transfer of tools between the two. Finally, we tested for the functionality of gene deletions by knocking out two genes of the archaeal motility structure, the archaellum. These deletion mutants were as expected non-motile and the phenotype of one deletion could be rescued by the expression of the deleted archaellum gene from a plasmid. Thus, we developed a functional genetic toolbox for the euryarchaeal virus host Hfx. gibbonsii LR2-5, which will propel future studies on archaeal viruses. IMPORTANCE: Species from all domains of life are infected by viruses. In some environments, viruses outnumber their microbial hosts by a factor of 10, and viruses are the most important predators of microorganisms. While much has been discovered about the infection mechanisms of bacterial and eukaryotic viruses, archaeal viruses remain understudied. Good model systems are needed to study their virus-host interactions in detail. The salt-loving archaeon Haloferax gibbonsii LR2-5 has been shown to be infected by a variety of different viruses and, thus, is an excellent model to study archaeal viruses. By establishing a genetic system, we have significantly expanded the toolbox for this model organism, which will fuel our understanding of infection strategies of the underexplored archaeal viruses.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Haloferax , Vírus , Haloferax/genética , Deleção de Genes , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Regiões Promotoras Genéticas , Vírus/genética , Proteínas Arqueais/genética
2.
Proc Natl Acad Sci U S A ; 121(10): e2311321121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408251

RESUMO

Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.


Assuntos
Euryarchaeota , Vesículas Extracelulares , Haloferax volcanii , Proteínas Monoméricas de Ligação ao GTP , Euryarchaeota/genética , Archaea/genética , RNA , Haloferax volcanii/genética , Vesículas Extracelulares/genética
3.
Nat Commun ; 15(1): 1414, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360755

RESUMO

Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Forma Celular , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
4.
Microlife ; 4: uqad007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223740

RESUMO

CRISPR-Cas systems provide heritable acquired immunity against viruses to archaea and bacteria. Cas3 is a CRISPR-associated protein that is common to all Type I systems, possesses both nuclease and helicase activities, and is responsible for degradation of invading DNA. Involvement of Cas3 in DNA repair had been suggested in the past, but then set aside when the role of CRISPR-Cas as an adaptive immune system was realized. Here we show that in the model archaeon Haloferax volcanii a cas3 deletion mutant exhibits increased resistance to DNA damaging agents compared with the wild-type strain, but its ability to recover quickly from such damage is reduced. Analysis of cas3 point mutants revealed that the helicase domain of the protein is responsible for the DNA damage sensitivity phenotype. Epistasis analysis indicated that cas3 operates with mre11 and rad50 in restraining the homologous recombination pathway of DNA repair. Mutants deleted for Cas3 or deficient in its helicase activity showed higher rates of homologous recombination, as measured in pop-in assays using non-replicating plasmids. These results demonstrate that Cas proteins act in DNA repair, in addition to their role in defense against selfish elements and are an integral part of the cellular response to DNA damage.

5.
Microlife ; 4: uqad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223747

RESUMO

In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.

6.
Methods Mol Biol ; 2522: 57-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125743

RESUMO

To date, a plethora of tools for molecular biology have been developed on the basis of the CRISPR-Cas system. Almost all use the class 2 systems since here the setup is the simplest with only one protein and one guide RNA, allowing for easy transfer to and expression in other organisms. However, the CRISPR-Cas components harnessed for applications are derived from mesophilic bacteria and are not optimal for use in extremophilic archaea.Here, we describe the application of an endogenous CRISPR-Cas system as a tool for silencing gene expression in a halophilic archaeon. Haloferax volcanii has a CRISPR-Cas system of subtype I-B, which can be easily used to repress the transcription of endogenous genes, allowing to study the effects of their depletion. This article gives a step-by-step introduction on how to use the implemented system for any gene of interest in Haloferax volcanii. The concept of CRISPRi described here for Haloferax can be transferred to any other archaeon, that is genetically tractable and has an endogenous CRISPR-Cas I systems.


Assuntos
Haloferax volcanii , Sistemas CRISPR-Cas/genética , Expressão Gênica , Haloferax volcanii/genética , Biologia Molecular , RNA Guia de Cinetoplastídeos
7.
Front Microbiol ; 13: 822304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495653

RESUMO

CRISPR-Cas constitutes an adaptive prokaryotic defence system against invasive nucleic acids like viruses and plasmids. Beyond their role in immunity, CRISPR-Cas systems have been shown to closely interact with components of cellular DNA repair pathways, either by regulating their expression or via direct protein-protein contact and enzymatic activity. The integrase Cas1 is usually involved in the adaptation phase of CRISPR-Cas immunity but an additional role in cellular DNA repair pathways has been proposed previously. Here, we analysed the capacity of an archaeal Cas1 from Haloferax volcanii to act upon DNA damage induced by oxidative stress and found that a deletion of the cas1 gene led to reduced survival rates following stress induction. In addition, our results indicate that Cas1 is directly involved in DNA repair as the enzymatically active site of the protein is crucial for growth under oxidative conditions. Based on biochemical assays, we propose a mechanism by which Cas1 plays a similar function to DNA repair protein Fen1 by cleaving branched intermediate structures. The present study broadens our understanding of the functional link between CRISPR-Cas immunity and DNA repair by demonstrating that Cas1 and Fen1 display equivalent roles during archaeal DNA damage repair.

8.
mBio ; 12(4): e0141621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253062

RESUMO

Transcriptional regulators that integrate cellular and environmental signals to control cell division are well known in bacteria and eukaryotes, but their existence is poorly understood in archaea. We identified a conserved gene (cdrS) that encodes a small protein and is highly transcribed in the model archaeon Haloferax volcanii. The cdrS gene could not be deleted, but CRISPR interference (CRISPRi)-mediated repression of the cdrS gene caused slow growth and cell division defects and changed the expression of multiple genes and their products associated with cell division, protein degradation, and metabolism. Consistent with this complex regulatory network, overexpression of cdrS inhibited cell division, whereas overexpression of the operon encoding both CdrS and a tubulin-like cell division protein (FtsZ2) stimulated division. Chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) identified 18 DNA-binding sites of the CdrS protein, including one upstream of the promoter for a cell division gene, ftsZ1, and another upstream of the essential gene dacZ, encoding diadenylate cyclase involved in c-di-AMP signaling, which is implicated in the regulation of cell division. These findings suggest that CdrS is a transcription factor that plays a central role in a regulatory network coordinating metabolism and cell division. IMPORTANCE Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail. In contrast, cell division in members of the Archaea is still understudied, and its regulation is poorly understood. Interestingly, different cell division machineries appear in members of the Archaea, with the Euryarchaeota using a cell division apparatus based on the tubulin-like cytoskeletal protein FtsZ, as in bacteria. Here, we identify the small protein CdrS as essential for survival and a central regulator of cell division in the euryarchaeon Haloferax volcanii. CdrS also appears to coordinate other cellular pathways, including synthesis of signaling molecules and protein degradation. Our results show that CdrS plays a sophisticated role in cell division, including regulation of numerous associated genes. These findings are expected to initiate investigations into conditional regulation of division in archaea.


Assuntos
Divisão Celular/genética , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , Fatores de Transcrição/genética , Transcrição Gênica , Haloferax volcanii/fisiologia , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Fatores de Transcrição/metabolismo
9.
Front Mol Biosci ; 8: 640440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055875

RESUMO

The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR-cas genes, but the mature s479 contains a crRNA-like 5' handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR-Cas system is involved in s479 function.

10.
Front Microbiol ; 11: 583010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329447

RESUMO

In recent years, fluorescence microscopy techniques for the localization and tracking of single molecules in living cells have become well-established and are indispensable tools for the investigation of cellular biology and in vivo biochemistry of many bacterial and eukaryotic organisms. Nevertheless, these techniques are still not established for imaging archaea. Their establishment as a standard tool for the study of archaea will be a decisive milestone for the exploration of this branch of life and its unique biology. Here, we have developed a reliable protocol for the study of the archaeon Haloferax volcanii. We have generated an autofluorescence-free H. volcanii strain, evaluated several fluorescent proteins for their suitability to serve as single-molecule fluorescence markers and codon-optimized them to work under optimal H. volcanii cultivation conditions. We found that two of them, Dendra2Hfx and PAmCherry1Hfx, provide state-of-the-art single-molecule imaging. Our strategy is quantitative and allows dual-color imaging of two targets in the same field of view (FOV) as well as DNA co-staining. We present the first single-molecule localization microscopy (SMLM) images of the subcellular organization and dynamics of two crucial intracellular proteins in living H. volcanii cells, FtsZ1, which shows complex structures in the cell division ring, and RNA polymerase, which localizes around the periphery of the cellular DNA. This work should provide incentive to develop SMLM strategies for other archaeal organisms in the near future.

11.
Front Microbiol ; 11: 594838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329479

RESUMO

In all three domains of life, tRNA genes contain introns that must be removed to yield functional tRNA. In archaea and eukarya, the first step of this process is catalyzed by a splicing endonuclease. The consensus structure recognized by the splicing endonuclease is a bulge-helix-bulge (BHB) motif which is also found in rRNA precursors. So far, a systematic analysis to identify all biological substrates of the splicing endonuclease has not been carried out. In this study, we employed CRISPRi to repress expression of the splicing endonuclease in the archaeon Haloferax volcanii to identify all substrates of this enzyme. Expression of the splicing endonuclease was reduced to 1% of its normal level, resulting in a significant extension of lag phase in H. volcanii growth. In the repression strain, 41 genes were down-regulated and 102 were up-regulated. As an additional approach in identifying new substrates of the splicing endonuclease, we isolated and sequenced circular RNAs, which identified excised introns removed from tRNA and rRNA precursors as well as from the 5' UTR of the gene HVO_1309. In vitro processing assays showed that the BHB sites in the 5' UTR of HVO_1309 and in a 16S rRNA-like precursor are processed by the recombinant splicing endonuclease. The splicing endonuclease is therefore an important player in RNA maturation in archaea.

13.
J Biol Chem ; 295(39): 13502-13515, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32723866

RESUMO

Haloferax volcanii is, to our knowledge, the only prokaryote known to tolerate CRISPR-Cas-mediated damage to its genome in the WT background; the resulting cleavage of the genome is repaired by homologous recombination restoring the WT version. In mutant Haloferax strains with enhanced self-targeting, cell fitness decreases and microhomology-mediated end joining becomes active, generating deletions in the targeted gene. Here we use self-targeting to investigate adaptation in H. volcanii CRISPR-Cas type I-B. We show that self-targeting and genome breakage events that are induced by self-targeting, such as those catalyzed by active transposases, can generate DNA fragments that are used by the CRISPR-Cas adaptation machinery for integration into the CRISPR loci. Low cellular concentrations of self-targeting crRNAs resulted in acquisition of large numbers of spacers originating from the entire genomic DNA. In contrast, high concentrations of self-targeting crRNAs resulted in lower acquisition that was mostly centered on the targeting site. Furthermore, we observed naïve spacer acquisition at a low level in WT Haloferax cells and with higher efficiency upon overexpression of the Cas proteins Cas1, Cas2, and Cas4. Taken together, these findings indicate that naïve adaptation is a regulated process in H. volcanii that operates at low basal levels and is induced by DNA breaks.


Assuntos
Adaptação Fisiológica/genética , Sistemas CRISPR-Cas/genética , Haloferax volcanii/genética , DNA Arqueal/genética , Genoma Arqueal/genética , Haloferax volcanii/citologia , Sequenciamento de Nucleotídeos em Larga Escala
14.
Nat Commun ; 11(1): 3145, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561711

RESUMO

While many aspects of archaeal cell biology remain relatively unexplored, systems biology approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid advances. Unfortunately, the enormous amount of MS data generated often remains incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific biological expertise for data interpretation. Here we present the initiation of the Archaeal Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal proteomes. Starting with the model archaeon Haloferax volcanii, we reanalyze MS datasets from various strains and culture conditions. Optimized peptide spectrum matching, with strict control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a median protein sequence coverage of 51%. These analyses, together with expert knowledge in diverse aspects of cell biology, provide meaningful insights into processes such as N-terminal protein maturation, N-glycosylation, and metabolism. Altogether, ArcPP serves as an invaluable blueprint for comprehensive prokaryotic proteomics.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Glicosilação , Espectrometria de Massas
15.
RNA Biol ; 17(5): 663-676, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32041469

RESUMO

Archaeal genomes are densely packed; thus, correct transcription termination is an important factor for orchestrated gene expression. A systematic analysis of RNA 3´ termini, to identify transcription termination sites (TTS) using RNAseq data has hitherto only been performed in two archaea, Methanosarcina mazei and Sulfolobus acidocaldarius. In this study, only regions directly downstream of annotated genes were analysed, and thus, only part of the genome had been investigated. Here, we developed a novel algorithm (Internal Enrichment-Peak Calling) that allows an unbiased, genome-wide identification of RNA 3´ termini independent of annotation. In an RNA fraction enriched for primary transcripts by terminator exonuclease (TEX) treatment we identified 1,543 RNA 3´ termini. Approximately half of these were located in intergenic regions, and the remainder were found in coding regions. A strong sequence signature consistent with known termination events at intergenic loci indicates a clear enrichment for native TTS among them. Using these data we determined distinct putative termination motifs for intergenic (a T stretch) and coding regions (AGATC). In vivo reporter gene tests of selected TTS confirmed termination at these sites, which exemplify the different motifs. For several genes, more than one termination site was detected, resulting in transcripts with different lengths of the 3´ untranslated region (3´ UTR).


Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , RNA Arqueal/genética , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Genoma Arqueal , Genômica/métodos , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Fases de Leitura Aberta , Óperon , Terminação da Transcrição Genética
16.
Chembiochem ; 21(1-2): 149-156, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31161645

RESUMO

Past sequencing campaigns overlooked small proteins as they seemed to be irrelevant due to their small size. However, their occurrence is widespread, and there is growing evidence that these small proteins are in fact functionally very important in organisms found in all kingdoms of life. Within a global proteome analysis for small proteins of the archaeal model organism Haloferax volcanii, the HVO_2922 protein has been identified. It is differentially expressed in response to changes in iron and salt concentrations, thus suggesting that its expression is stress-regulated. The protein is conserved among Haloarchaea and contains an uncharacterized domain of unknown function (DUF1508, UPF0339 family protein). We elucidated the NMR solution structure, which shows that the isolated protein forms a symmetrical dimer. The dimerization is found to be concentration-dependent and essential for protein stability and most likely for its functionality, as mutagenesis at the dimer interface leads to a decrease in stability and protein aggregation.


Assuntos
Proteínas Arqueais/química , Haloferax volcanii/química , Termodinâmica , Proteínas Arqueais/metabolismo , Haloferax volcanii/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estabilidade Proteica , Soluções
18.
Methods ; 172: 76-85, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150759

RESUMO

In the years following its discovery and characterization, the CRISPR-Cas system has been modified and converted into a multitude of applications for eukaryotes and bacteria, such as genome editing and gene regulation. Since no such method has been available for archaea, we developed a tool for gene repression in the haloarchaeon Haloferax volcanii by repurposing its endogenous type I-B CRISPR-Cas system. Here, we present the two possible approaches for gene repression as well as our workflow to achieve and assess gene knockdown, offer recommendations on protospacer selection and give some examples of genes we have successfully silenced.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , Cromossomos de Archaea/genética , Técnicas de Silenciamento de Genes/métodos , Genes Arqueais/genética , Genes Essenciais/genética , Plasmídeos/genética
19.
Chembiochem ; 21(8): 1178-1187, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31705614

RESUMO

Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins have been overlooked for a long time and were only recently rediscovered. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure-function relationship. Herein, a method is presented for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded, and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), 27 small proteins from 9 different bacterial and archaeal organisms have been investigated. It is found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. A protocol for fast NMR spectroscopy structure elucidation is described for the small proteins that adopt a persistently folded structure by implementation of new NMR technologies, including automated resonance assignment and nonuniform sampling in combination with targeted acquisition.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Biologia Computacional/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Fases de Leitura Aberta , Conformação Proteica
20.
Microbiologyopen ; 9(2): e974, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31797576

RESUMO

Halobacterium salinarum is an extremely halophilic archaeon that is widely distributed in hypersaline environments and was originally isolated as a spoilage organism of salted fish and hides. The type strain 91-R6 (DSM 3754T ) has seldom been studied and its genome sequence has only recently been determined by our group. The exact relationship between the type strain and two widely used model strains, NRC-1 and R1, has not been described before. The genome of Hbt. salinarum strain 91-R6 consists of a chromosome (2.17 Mb) and two large plasmids (148 and 102 kb, with 39,230 bp being duplicated). Cytosine residues are methylated (m4 C) within CTAG motifs. The genomes of type and laboratory strains are closely related, their chromosomes sharing average nucleotide identity (ANIb) values of 98% and in silico DNA-DNA hybridization (DDH) values of 95%. The chromosomes are completely colinear, do not show genome rearrangement, and matching segments show <1% sequence difference. Among the strain-specific sequences are three large chromosomal replacement regions (>10 kb). The well-studied AT-rich island (61 kb) of the laboratory strains is replaced by a distinct AT-rich sequence (47 kb) in 91-R6. Another large replacement (91-R6: 78 kb, R1: 44 kb) codes for distinct homologs of proteins involved in motility and N-glycosylation. Most (107 kb) of plasmid pHSAL1 (91-R6) is very closely related to part of plasmid pHS3 (R1) and codes for essential genes (e.g. arginine-tRNA ligase and the pyrimidine biosynthesis enzyme aspartate carbamoyltransferase). Part of pHS3 (42.5 kb total) is closely related to the largest strain-specific sequence (164 kb) in the type strain chromosome. Genome sequencing unraveled the close relationship between the Hbt. salinarum type strain and two well-studied laboratory strains at the DNA and protein levels. Although an independent isolate, the type strain shows a remarkably low evolutionary difference to the laboratory strains.


Assuntos
Genoma Arqueal , Genômica , Halobacterium salinarum/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Evolução Biológica , Biologia Computacional/métodos , Ordem dos Genes , Heterogeneidade Genética , Genômica/métodos , Anotação de Sequência Molecular , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...