Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Neural Circuits ; 16: 839521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310548

RESUMO

Spinal interneurons play a critical role in motor output. A given interneuron may receive convergent input from several different sensory modalities and descending centers and relay this information to just as many targets. Therefore, there is a critical need to quantify populations of spinal interneurons simultaneously. Here, we quantify the functional connectivity of spinal neurons through the concurrent recording of populations of lumbar interneurons and hindlimb motor units in the in vivo cat model during activation of either the ipsilateral sural nerve or contralateral tibial nerve. Two microelectrode arrays were placed into lamina VII, one at L3 and a second at L6/7, while an electrode array was placed on the surface of the exposed muscle. Stimulation of tibial and sural nerves elicited similar changes in the discharge rate of both interneurons and motor units. However, these same neurons showed highly significant differences in prevalence and magnitude of correlated activity underlying these two forms of afferent drive. Activation of the ipsilateral sural nerve resulted in highly correlated activity, particularly at the caudal array. In contrast, the contralateral tibial nerve resulted in less, but more widespread correlated activity at both arrays. These data suggest that the ipsilateral sural nerve has dense projections onto caudal lumbar spinal neurons, while contralateral tibial nerve has a sparse pattern of projections.


Assuntos
Interneurônios , Medula Espinal , Animais , Membro Posterior/fisiologia , Interneurônios/fisiologia , Neurônios Aferentes , Medula Espinal/fisiologia
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(11): 2459-2467, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32986558

RESUMO

Delivery of neurotrophins to the spinal injury site via cellular transplants or viral vectors administration has been shown to promote recovery of locomotion in the absence of locomotor training in adult spinalized animals. These delivery methods involved risks of secondary injury to the cord and do not allow for precise and controlled dosing making them unsuitable for clinical applications. The present study was aimed at evaluating the locomotor recovery efficacy and safety of the neurotrophin BDNF delivered intrathecally to the lumbar locomotor centers using an implantable and programmable infusion mini-pump. Results showed that BDNF treated spinal cats recovered weight-bearing plantar stepping at all velocities tested (0.3-0.8 m/s). Spinal cats treated with saline did not recover stepping ability, especially at higher velocities, and dragged their hind paws on the treadmill. Histological evaluation showed minimal catheter associated trauma and tissue inflammation, underlining that intrathecal delivery by an implantable/programmable pump is a safe and effective method for delivery of a controlled BDNF dosage; it poses minimal risks to the cord and is clinically translational.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Traumatismos da Medula Espinal , Animais , Gatos , Teste de Esforço , Locomoção , Recuperação de Função Fisiológica , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA