Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3326, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637532

RESUMO

Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Fosforilação , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinâmica Mitocondrial/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(9): e2322582121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381787

RESUMO

Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of this protein is ill characterized in multicellular organisms. Here, we generated a CRISPR-induced null allele of the fruit fly ortholog CG8320/Tmem208 by replacing the gene with the Kozak-GAL4 sequence. We show that Tmem208 is broadly expressed in flies and that its loss causes lethality, although a few short-lived flies eclose. These animals exhibit wing and eye developmental defects consistent with impaired cell polarity and display mild ER stress. Tmem208 physically interacts with Frizzled (Fz), a planar cell polarity (PCP) receptor, and is required to maintain proper levels of Fz. Moreover, we identified a child with compound heterozygous variants in TMEM208 who presents with developmental delay, skeletal abnormalities, multiple hair whorls, cardiac, and neurological issues, symptoms that are associated with PCP defects in mice and humans. Additionally, fibroblasts of the proband display mild ER stress. Expression of the reference human TMEM208 in flies fully rescues the loss of Tmem208, and the two proband-specific variants fail to rescue, suggesting that they are loss-of-function alleles. In summary, our study uncovers a role of TMEM208 in development, shedding light on its significance in ER homeostasis and cell polarity.


Assuntos
Proteínas de Drosophila , Humanos , Criança , Animais , Camundongos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Polaridade Celular/genética , Drosophila/genética , Transdução de Sinais/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Genome ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412472

RESUMO

The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.

4.
Nat Metab ; 5(9): 1595-1614, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653044

RESUMO

In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.


Assuntos
Adipogenia , Mitocôndrias , Criança , Animais , Humanos , Ceramidas , Drosophila , Ferro , Ácidos Graxos
5.
HGG Adv ; 4(1): 100157, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36408368

RESUMO

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtorno do Espectro Autista/genética , Drosophila melanogaster/genética , Transtornos do Neurodesenvolvimento/genética , Análise por Conglomerados , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas de Drosophila/genética
6.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218524

RESUMO

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Assuntos
Encéfalo , Malformações do Sistema Nervoso , Animais , Feminino , Humanos , Camundongos , Cerebelo/anormalidades , Neurônios
7.
Cell Rep ; 41(10): 111751, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476864

RESUMO

The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequester the wild-type protein to the cytoplasm and cause aggregation. Moreover, patient astrocytes fail to support neuronal survival in coculture and exhibit aberrant mitochondria and respiratory dysfunction. Treatment with the small molecule copper ATSM (CuATSM) rescues neuronal survival and restores mitochondrial function. Importantly, the in vitro findings are recapitulated in vivo, where co-expression of full-length and truncated IRF2BPL in Drosophila results in cytoplasmic accumulation of full-length IRF2BPL. Moreover, flies harboring heterozygous truncations of the IRF2BPL ortholog (Pits) display progressive motor defects that are ameliorated by CuATSM treatment. Our findings provide insights into mechanisms involved in NEDAMSS and reveal a promising treatment for this severe disorder.

8.
Cell Rep ; 38(11): 110517, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294868

RESUMO

Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Drosophila , Transtornos do Neurodesenvolvimento , Receptores de Glicina , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico/genética , Drosophila/genética , Predisposição Genética para Doença , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de Glicina/genética
9.
Am J Hum Genet ; 109(4): 571-586, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35240055

RESUMO

TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental delay, intellectual disability, speech delay, and seizures. Bioinformatic analyses demonstrate that these variants are rare and likely pathogenic. We found that the Drosophila ortholog of TIAM1, still life (sif), is expressed in larval and adult central nervous system (CNS) and is mainly expressed in a subset of neurons, but not in glia. Loss of sif reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. The TIAM1 reference (Ref) cDNA partially rescues the sif loss-of-function (LoF) phenotypes. We also assessed the function associated with three TIAM1 variants carried by two of the probands and compared them to the TIAM1 Ref cDNA function in vivo. TIAM1 p.Arg23Cys has reduced rescue ability when compared to TIAM1 Ref, suggesting that it is a partial LoF variant. In ectopic expression studies, both wild-type sif and TIAM1 Ref are toxic, whereas the three variants (p.Leu862Phe, p.Arg23Cys, and p.Gly328Val) show reduced toxicity, suggesting that they are partial LoF variants. In summary, we provide evidence that sif is important for appropriate neural function and that TIAM1 variants observed in the probands are disruptive, thus implicating loss of TIAM1 in neurological phenotypes in humans.


Assuntos
Deficiência Intelectual , Alelos , Animais , Criança , DNA Complementar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Drosophila/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Convulsões/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
10.
Hum Mol Genet ; 31(19): 3231-3244, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35234901

RESUMO

BACKGROUND: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS: Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS: Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION: We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.


Assuntos
Doenças Cerebelares , Proteínas de Drosophila , Deficiência Intelectual , Malformações do Sistema Nervoso , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Doenças Cerebelares/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Neuroglia , Proteínas Repressoras
11.
Sci Adv ; 8(3): eabl5613, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044823

RESUMO

De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcription in flies. In contrast, neuronal depletion of Pits leads to increased wingless (wg) levels in the brain and is associated with axonal loss, whereas inhibition of Wg signaling is neuroprotective. Moreover, increased neuronal expression of wg in flies is sufficient to cause age-dependent axonal loss, similar to reduction of Pits. Loss of irf2bpl in zebrafish also causes neurological defects with an associated increase in wnt1 transcription and downstream signaling. WNT1 is also increased in patient-derived astrocytes, and pharmacological inhibition of Wnt suppresses the neurological phenotypes. Last, IRF2BPL and the Wnt antagonist, CKIα, physically and genetically interact, showing that IRF2BPL and CkIα antagonize Wnt transcription and signaling.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Transporte/metabolismo , Criança , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Fator Regulador 2 de Interferon/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Via de Sinalização Wnt , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
PLoS Genet ; 17(12): e1009962, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34905536

RESUMO

TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D genes (almondex, CG11103/amaretto, CG10795/biscotti) in Drosophila and found that they share the same maternal-effect neurogenic defect. Triple null animals are not phenotypically worse than single nulls, suggesting these genes function together. Overexpression of the most conserved region of the TM2D proteins acts as a potent inhibitor of Notch signaling at the γ-secretase cleavage step. Lastly, Almondex is detected in the brain and its loss causes shortened lifespan accompanied by progressive motor and electrophysiological defects. The functional links between all three TM2D genes are likely to be evolutionarily conserved, suggesting that this entire gene family may be involved in AD.


Assuntos
Proteínas de Drosophila , Proteínas de Membrana , Neurogênese , Receptores Notch , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Mutação/genética , Neurogênese/genética , Neurônios/metabolismo , Receptores Notch/genética , Transdução de Sinais/genética
13.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949639

RESUMO

A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aß42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.


Assuntos
Doença de Alzheimer , Gotículas Lipídicas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Drosophila , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Fármacos Neuroprotetores
14.
Mol Genet Genomic Med ; 9(1): e1542, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350591

RESUMO

BACKGROUND: CTNNB1 (MIM 116806) encodes beta-catenin, an adherens junction protein that supports the integrity between layers of epithelial tissue and mediates intercellular signaling. Recently, various heterozygous germline variants in CTNNB1 have been associated with human disease, including neurodevelopmental disorder with spastic diplegia and visual defects (MIM 615075) as well as isolated familial exudative vitreoretinopathy without developmental delays or other organ system involvement (MIM 617572). From over 40 previously reported patients with CTNNB1-related neurodevelopmental disorder, many have had ocular anomalies including strabismus, hyperopia, and astigmatism. More recently, multiple reports indicate that these abnormalities are associated with the presence of vitreoretinopathy. METHODS: We gathered a cohort of three patients with CTNNB1-related neurodevelopmental disorder, recruited from both our own clinic and referred from outside providers. We then searched for a clinical database comprised of over 12,000 exome sequencing studies to identify and recruit four additional patients. RESULTS: Here, we report seven new cases of CTNNB1-related neurodevelopmental disorder, all harboring de novo variants, six of which were previously unreported. All patients but one presented with a spectrum of ocular abnormalities and one patient, who was found to carry a missense variant in CTNNB1, had notable vitreoretinopathy. CONCLUSIONS: Our findings suggest ophthalmologic screening should be performed in all patients with CTNNB1 variants.


Assuntos
Deficiências do Desenvolvimento/genética , Vitreorretinopatias Exsudativas Familiares/genética , beta Catenina/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Vitreorretinopatias Exsudativas Familiares/patologia , Feminino , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Fenótipo , Retina/patologia
15.
J Neurosci ; 40(42): 7999-8024, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928889

RESUMO

In multipolar vertebrate neurons, action potentials (APs) initiate close to the soma, at the axonal initial segment. Invertebrate neurons are typically unipolar with dendrites integrating directly into the axon. Where APs are initiated in the axons of invertebrate neurons is unclear. Voltage-gated sodium (NaV) channels are a functional hallmark of the axonal initial segment in vertebrates. We used an intronic Minos-Mediated Integration Cassette to determine the endogenous gene expression and subcellular localization of the sole NaV channel in both male and female Drosophila, para Despite being the only NaV channel in the fly, we show that only 23 ± 1% of neurons in the embryonic and larval CNS express para, while in the adult CNS para is broadly expressed. We generated a single-cell transcriptomic atlas of the whole third instar larval brain to identify para expressing neurons and show that it positively correlates with markers of differentiated, actively firing neurons. Therefore, only 23 ± 1% of larval neurons may be capable of firing NaV-dependent APs. We then show that Para is enriched in an axonal segment, distal to the site of dendritic integration into the axon, which we named the distal axonal segment (DAS). The DAS is present in multiple neuron classes in both the third instar larval and adult CNS. Whole cell patch clamp electrophysiological recordings of adult CNS fly neurons are consistent with the interpretation that Nav-dependent APs originate in the DAS. Identification of the distal NaV localization in fly neurons will enable more accurate interpretation of electrophysiological recordings in invertebrates.SIGNIFICANCE STATEMENT The site of action potential (AP) initiation in invertebrates is unknown. We tagged the sole voltage-gated sodium (NaV) channel in the fly, para, and identified that Para is enriched at a distal axonal segment. The distal axonal segment is located distal to where dendrites impinge on axons and is the likely site of AP initiation. Understanding where APs are initiated improves our ability to model neuronal activity and our interpretation of electrophysiological data. Additionally, para is only expressed in 23 ± 1% of third instar larval neurons but is broadly expressed in adults. Single-cell RNA sequencing of the third instar larval brain shows that para expression correlates with the expression of active, differentiated neuronal markers. Therefore, only 23 ± 1% of third instar larval neurons may be able to actively fire NaV-dependent APs.


Assuntos
Segmento Inicial do Axônio/metabolismo , Proteínas de Drosophila/biossíntese , Drosophila/metabolismo , Neurônios/metabolismo , Canais de Sódio/biossíntese , Canais de Sódio Disparados por Voltagem/biossíntese , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Dendritos/metabolismo , Proteínas de Drosophila/genética , Fenômenos Eletrofisiológicos , Eletrorretinografia , Expressão Gênica/genética , Larva , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Técnicas de Patch-Clamp , Canais de Sódio/genética , Transcriptoma , Canais de Sódio Disparados por Voltagem/genética
16.
Hum Mol Genet ; 29(9): 1568-1579, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32356556

RESUMO

The translocase of outer mitochondrial membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both individuals exhibited shared symptoms including hypotonia, hyper-reflexia, ataxia, dystonia and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset. Both individuals were undiagnosed despite extensive genetics workups. Individual 1 was found to have a p.Thr607Ile variant while Individual 2 was found to have a p.Ile554Phe variant in TOMM70. To functionally assess both TOMM70 variants, we replaced the Drosophila Tom70 coding region with a Kozak-mini-GAL4 transgene using CRISPR-Cas9. Homozygous mutant animals die as pupae, but lethality is rescued by the mini-GAL4-driven expression of human UAS-TOMM70 cDNA. Both modeled variants lead to significantly less rescue indicating that they are loss-of-function alleles. Similarly, RNAi-mediated knockdown of Tom70 in the developing eye causes roughening and synaptic transmission defect, common findings in neurodegenerative and mitochondrial disorders. These phenotypes were rescued by the reference, but not the variants, of TOMM70. Altogether, our data indicate that de novo loss-of-function variants in TOMM70 result in variable white matter disease and neurological phenotypes in affected individuals.


Assuntos
Predisposição Genética para Doença , Leucoencefalopatias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Doenças do Sistema Nervoso/genética , Idade de Início , Ataxia/genética , Ataxia/patologia , Criança , Distonia/genética , Distonia/patologia , Feminino , Humanos , Leucoencefalopatias/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Doenças do Sistema Nervoso/patologia , Reflexo Anormal/genética
17.
Am J Hum Genet ; 106(5): 717-725, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330417

RESUMO

We identified three unrelated individuals with de novo missense variants in CDK19, encoding a cyclin-dependent kinase protein family member that predominantly regulates gene transcription. These individuals presented with hypotonia, global developmental delay, epileptic encephalopathy, and dysmorphic features. CDK19 is conserved between vertebrate and invertebrate model organisms, but currently abnormalities in CDK19 are not known to be associated with a human disorder. Loss of Cdk8, the fly homolog of CDK19, causes larval lethality, which is suppressed by expression of human CDK19 reference cDNA. In contrast, the CDK19 p.Tyr32His and p.Thr196Ala variants identified in the affected individuals fail to rescue the loss of Cdk8 and behave as null alleles. Additionally, neuronal RNAi-mediated knockdown of Cdk8 in flies results in semi-lethality. The few eclosing flies exhibit severe seizures and a reduced lifespan. Both phenotypes are fully suppressed by moderate expression of the CDK19 reference cDNA but not by expression of the two variants. Finally, loss of Cdk8 causes an obvious loss of boutons and synapses at larval neuromuscular junctions (NMJs). Together, our findings demonstrate that human CDK19 fully replaces the function of Cdk8 in the fly, the human disease-associated CDK19 variants behave as strong loss-of-function variants, and deleterious CDK19 variants underlie a syndromic neurodevelopmental disorder.


Assuntos
Encefalopatias/genética , Quinases Ciclina-Dependentes/genética , Epilepsia Generalizada/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Adulto , Sequência de Aminoácidos , Animais , Pré-Escolar , Quinase 8 Dependente de Ciclina/deficiência , Quinase 8 Dependente de Ciclina/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Junção Neuromuscular , Doenças Raras/genética , Convulsões/genética , Síndrome , Adulto Jovem
18.
Neuron ; 106(4): 589-606.e6, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32169171

RESUMO

ACOX1 (acyl-CoA oxidase 1) encodes the first and rate-limiting enzyme of the very-long-chain fatty acid (VLCFA) ß-oxidation pathway in peroxisomes and leads to H2O2 production. Unexpectedly, Drosophila (d) ACOX1 is mostly expressed and required in glia, and loss of ACOX1 leads to developmental delay, pupal death, reduced lifespan, impaired synaptic transmission, and glial and axonal loss. Patients who carry a previously unidentified, de novo, dominant variant in ACOX1 (p.N237S) also exhibit glial loss. However, this mutation causes increased levels of ACOX1 protein and function resulting in elevated levels of reactive oxygen species in glia in flies and murine Schwann cells. ACOX1 (p.N237S) patients exhibit a severe loss of Schwann cells and neurons. However, treatment of flies and primary Schwann cells with an antioxidant suppressed the p.N237S-induced neurodegeneration. In summary, both loss and gain of ACOX1 lead to glial and neuronal loss, but different mechanisms are at play and require different treatments.


Assuntos
Acil-CoA Oxidase/genética , Axônios/enzimologia , Degeneração Neural/genética , Neuroglia/enzimologia , Animais , Axônios/patologia , Drosophila , Humanos , Camundongos , Mutação , Degeneração Neural/enzimologia , Neuroglia/patologia , Ratos
19.
Nat Commun ; 10(1): 4679, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616000

RESUMO

Postsynaptic density (PSD) proteins have been implicated in the pathophysiology of neurodevelopmental and psychiatric disorders. Here, we present detailed clinical and genetic data for 20 patients with likely gene-disrupting mutations in TANC2-whose protein product interacts with multiple PSD proteins. Pediatric patients with disruptive mutations present with autism, intellectual disability, and delayed language and motor development. In addition to a variable degree of epilepsy and facial dysmorphism, we observe a pattern of more complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. Although this observation requires replication to establish statistical significance, it also suggests that mutations in this gene are associated with a variety of neuropsychiatric disorders consistent with its postsynaptic function. We find that TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, but shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes.


Assuntos
Transtornos Mentais/genética , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Adolescente , Adulto , Animais , Transtorno Autístico/genética , Transtorno Autístico/psicologia , Comportamento Animal , Encéfalo/metabolismo , Criança , Pré-Escolar , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/psicologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epilepsia/genética , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/psicologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/psicologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transtornos Mentais/psicologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/psicologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Sequenciamento do Exoma , Adulto Jovem
20.
Am J Hum Genet ; 105(5): 907-920, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31607425

RESUMO

We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.


Assuntos
Deficiências do Desenvolvimento/genética , Nanismo/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação/genética , Adulto , Alelos , Animais , Criança , Espinhas Dendríticas/genética , Drosophila/genética , Feminino , Humanos , Masculino , Camundongos , Arábia Saudita , Sinapses/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...