Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(7): 366, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713728

RESUMO

Alcohol-related liver disease is the most prevalent chronic liver disease worldwide, accounting for 30% of hepatocellular carcinoma (HCC) cases and HCC-specific deaths. However, the knowledge on mechanisms by which alcohol consumption leads to cancer progression and its aggressiveness is limited. Better understanding of the clinical features and the mechanisms of alcohol-induced HCC are of critical importance for prevention and the development of novel treatments. Early stage Huh-7 and advanced SNU449 liver cancer cell lines were subjected to chronic alcohol exposure (CAE), at different doses for 6 months followed by 1-month alcohol withdrawal period. ADH activity and ALDH expression were much lower in SNU449 compared with Huh-7 cells and at the 270 mM dose, CAE decreased cell viability by about 50% and 80%, respectively, in Huh-7 and SNU449 cells but induced mortality only in Huh-7 cells. Thus, Huh-7 may be more vulnerable to ethanol toxicity because of the higher levels of acetaldehyde. CAE induced a dose-dependent increase in cell migration and invasion and also in the expression of cancer stem cells markers (CD133, CD44, CD90). CAE in Huh-7 cells selectively activated ERK1/2 and inhibited GSK3ß signaling pathways. Most of the changes induced by CAE were reversed after alcohol withdrawal. Interestingly, we confirmed the increase in CD133 mRNA levels in the tumoral tissue of patients with ethanol-related HCC compared to other HCC etiologies. Our results may explain the benefits observed in epidemiological studies showing a significant increase of overall survival in abstinent compared with non-abstinent patients.


Assuntos
Alcoolismo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Síndrome de Abstinência a Substâncias , Alcoolismo/complicações , Alcoolismo/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Etanol/toxicidade , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
2.
Psychopharmacology (Berl) ; 239(7): 2245-2262, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35314896

RESUMO

RATIONALE: Binge drinking during adolescence impairs learning and memory on the long term, and many studies suggest a role of neuroinflammation. However, whether neuroinflammation occurs after the very first exposures to alcohol remains unclear, while initial alcohol exposure impairs learning for several days in male rats. OBJECTIVES: To investigate the role of neuroinflammation in the effects of only two binge-like episodes on learning and on neuronal plasticity in adolescent male rat hippocampus. METHODS: Animals received two ethanol i.p. injections (3 g/kg) 9 h apart. Forty-eight hours later, we recorded long-term depression (LTD) and potentiation (LTP) in CA1 area of hippocampus slices. In isolated CA1, we measured immunolabelings for microglial activation and Toll-like receptor 4 (TLR4) and mRNA levels for several cytokines. RESULTS: Forty-eight hours after the two binges, rats performed worse than control rats in novel object recognition, LTD was reduced, LTP was increased, and excitatory neurotransmission was more sensitive to an antagonist of the GluN2B subunit of the NMDA receptor. Exposure to ethanol with minocycline or indomethacin, two anti-inflammatory drugs, or with a TLR4 antagonist, prevented all effects of ethanol. Immunolabelings at 48 h showed a reduction of neuronal TLR4 that was prevented by minocycline pretreatment, while microglial reactivity was undetected and inflammatory cytokines mRNA levels were unchanged. CONCLUSION: Two binge-like ethanol exposures during adolescence in rat involved neuroinflammation leading to changes in TLR4 expression and in GluN2B functioning inducing disturbances in synaptic plasticity and cognitive deficits. Anti-inflammatory drugs are good candidates to prevent brain function and memory deficits induced by few binge-drinking episodes.


Assuntos
Anti-Inflamatórios , Etanol , Transtornos da Memória , Minociclina , Animais , Anti-Inflamatórios/farmacologia , Consumo Excessivo de Bebidas Alcoólicas , Citocinas/metabolismo , Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Masculino , Minociclina/farmacologia , Plasticidade Neuronal , RNA Mensageiro/metabolismo , Ratos , Receptor 4 Toll-Like/metabolismo
3.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205659

RESUMO

BACKGROUND: Acquired resistance to sorafenib in hepatocellular carcinoma (HCC) patients results in poor prognosis. Epithelial-to-mesenchymal transition (EMT) is the major mechanism implicated in the resistance to sorafenib. We have reported the tumor suppressor role of SLAMF3 (signaling lymphocytic activation molecules family 3) in HCC progression and highlighted its implication in controlling the MRP-1 transporter activity. These data suggest the implication of SLAMF3 in sorafenib resistance mechanisms. METHODS: We evaluated the resistance to sorafenib in Huh-7 cells treated with progressive doses (Res cells). We investigated the link between acquired resistance to sorafenib and SLAMF3 expression by flow cytometry and Western blot methods. Furthermore, we analyzed the EMT and the stem cell potential of cells resistant to sorafenib. RESULTS: Sorafenib resistance was confirmed in Res cells by analyzing the cell viability in the presence of sorafenib. The mesenchymal transition, in Res cells, was confirmed by high migratory index and the expression of EMT antigens. Interestingly, we found that loss of SLAMF3 expression corresponded to sorafenib-resistant phenotypes. The overexpression of SLAMF3 reversed EMT, decreased metastatic potential and inhibited mTOR/ERK1/2 in Res cells. CONCLUSIONS: We propose that rescuing SLAMF3 expression in resistant cells could represent a potential therapeutic strategy to enhance sorafenib efficacy in HCC patients.

4.
Biomed Pharmacother ; 146: 112481, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062049

RESUMO

INTRODUCTION: Patients over 80 years of age are more prone to develop severe symptoms and die from COVID-19. Antibiotics were massively prescribed in the first days of the pandemic without evidence of super infection. Antibiotics may increase the risk of mortality in cases of viral pneumonia. With age and antibiotic use, the microbiota becomes altered and less protective effect against lethal viral pneumonia. Thus we assessed whether it is safe to prescribe antibiotics for COVID-19 pneumonia to patients over 80 years of age. METHOD: We conducted a retrospective monocentric study in a 1240-bed university hospital. Our inclusion criteria were patients aged ≥ 80 years, hospitalized in a COVID-19 unit, with either a positive SARS-CoV-2 RT-PCR from a nasopharyngeal swab or a CT scan within 72 h after or prior to hospitalization in the unit suggestive of infection. RESULTS: We included 101 patients who received antibiotics and 48 who did not. The demographics in the two groups were similar. Overall mortality was higher for the group that received antibiotics than for the other group (36.6% vs 14.6%,). According to univariate COX analysis, the risk of mortality was higher (HR = 1.98 [0.926; 4.23]) but non-significantly for the antibiotic group. In multivariate analysis, independent risk factors of mortality were an increased leukocyte count and decreased oxygen saturation (HR = 1.097 [1.022; 1.178] and HR = 0.927 [0.891; 0.964], respectively). CONCLUSION: This study raises questions about the interest of antibiotic therapy, its efficacy, and its effect on COVID-19 and encourages further research.


Assuntos
Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/mortalidade , Idoso de 80 Anos ou mais , Feminino , Hospitalização , Hospitais Universitários , Humanos , Estimativa de Kaplan-Meier , Masculino , Mortalidade , Análise Multivariada , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
5.
Alcohol Clin Exp Res ; 46(2): 207-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862633

RESUMO

BACKGROUND: Multiple ethanol binge drinking-like exposures during adolescence in the rat induce neuroinflammation, loss of neurogenesis, and cognitive deficits in adulthood. Interestingly, the first ethanol binge drinking-like exposure during adolescence also induces short- term impairments in cognition and synaptic plasticity in the hippocampus though the cellular mechanisms of these effects are unclear. Here, we sought to determine which of the cellular effects of ethanol might play a role in the disturbances in cognition and synaptic plasticity observed in the adolescent male rat after two binge-like ethanol exposures. METHODS: Using immunochemistry, we measured neurogenesis, neuronal loss, astrogliosis, neuroinflammation, and synaptogenesis in the hippocampus of adolescent rats 48 h after two binge-like ethanol exposures (3 g/kg, i.p., 9 h apart). We used flow cytometry to analyze activated microglia and identify the TLR4-expressing cell types. RESULTS: We detected increased hippocampal doublecortin immunoreactivity in the subgranular zone (SGZ) of the dentate gyrus (DG), astrogliosis in the SGZ, and a reduced number of mature neurons in the DG and in CA3, suggesting compensatory neurogenesis. Synaptic density decreased in the stratum oriens of CA1 revealing structural plasticity. There was no change in microglial TLR4 expression or in the number of activated microglia, suggesting a lack of neuroinflammatory processes, although neuronal TLR4 was decreased in CA1 and DG. CONCLUSIONS: Our findings demonstrate that the cognitive deficits associated with hippocampal synaptic plasticity alterations that we previously characterized 48 h after the first binge-like ethanol exposures are associated with hippocampal structural plasticity, astrogliosis, and decreased neuronal TLR4 expression, but not with microglia reactivity.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Etanol/farmacologia , Gliose/induzido quimicamente , Neurogênese/efeitos dos fármacos , Animais , Consumo Excessivo de Bebidas Alcoólicas/complicações , Disfunção Cognitiva/induzido quimicamente , Etanol/administração & dosagem , Hipocampo/efeitos dos fármacos , Masculino , Microglia/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Addict Biol ; 25(3): e12760, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31056842

RESUMO

Ethanol (EtOH) induces cognitive impairment through modulation of synaptic plasticity notably in the hippocampus. The cellular mechanism(s) of these EtOH effects may range from synaptic signaling modulation to alterations of the epigenome. Previously, we reported that two binge-like exposures to EtOH (3 g/kg, ip, 9 h apart) in adolescent rats abolished long-term synaptic depression (LTD) in hippocampus slices, induced learning deficits, and increased N-methyl-d-aspartate (NMDA) receptor signaling through its GluN2B subunit after 48 hours. Here, we tested the hypothesis of EtOH-induced epigenetic alterations leading to modulation of GluN2B and GluN2A NMDA receptor subunits. Forty-two days old rats were treated with EtOH or the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB, 600 mg/kg, ip) injected alone or 30 minutes before EtOH. After 48 hours, learning was tested with novel object recognition while synaptic plasticity and the role of GluN2A and GluN2B subunits in NMDA-fEPSP were measured in CA1 field of hippocampus slices. LTD and memory were impaired 48 hours after EtOH and NMDA-fEPSP analysis unraveled changes in the GluN2A/GluN2B balance. These results were associated with an increase in histone deacetylase (HDAC) activity and HDAC2 mRNA and protein while Ac-H4K12 labelling was decreased. EtOH increases expression of HDAC2 and mRNA level for GluN2B subunit (but not GluN2A), while HDAC2 modulates the promoter of the gene encoding GluN2B. Interestingly, NaB pretreatment prevented all the cellular and memory-impairing effects of EtOH. In conclusion, the memory-impairing effects of two binge-like EtOH exposure involve NMDA receptor-dependent LTD deficits due to a GluN2A/GluN2B imbalance resulting from changes in GluN2B expression induced by HDAC2.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/genética , Região CA1 Hipocampal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Histona Desacetilase 2/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Ácido Butírico/farmacologia , Região CA1 Hipocampal/metabolismo , Epigênese Genética/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Presse Med ; 47(7-8 Pt 1): 655-666, 2018.
Artigo em Francês | MEDLINE | ID: mdl-30032921

RESUMO

All chronic and excessive consumer of alcohol with recent jaundice should be assessed using a Maddrey's score for severe acute alcoholic hepatitis. Corticosteroids are the first line of treatment, associated with an appropriate nutritional support and alcohol abstinence. Corticosteroids plus N-acetylcysteine combination improves short-term survival over corticosteroids alone, and could be proposed as a first line therapy. The response to treatment is evaluated at the 7th day of treatment, with the Lille model≤0.45. Prognostic of non-responders to corticosteroids with Lille model>0.45 is dramatically low with 23% survival at 6 month. Early liver transplantation in a selected group of patients with non-response to corticosteroids significantly improves 6th month and long-term survival.


Assuntos
Doença Aguda , Hepatite Alcoólica , Algoritmos , Hepatite Alcoólica/diagnóstico , Hepatite Alcoólica/fisiopatologia , Hepatite Alcoólica/terapia , Humanos , Prognóstico , Índice de Gravidade de Doença
8.
Oncotarget ; 9(22): 16248-16262, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29662641

RESUMO

Signaling Lymphocytic Activation Molecules (SLAM) family receptors are initially described in immune cells. These receptors recruit both activating and inhibitory SH2 domain containing proteins through their Immunoreceptor Tyrosine based Switch Motifs (ITSMs). Accumulating evidence suggest that the members of this family are intimately involved in different physiological and pathophysiological events such as regulation of immune responses and entry pathways of certain viruses. Recently, other functions of SLAM, principally in the pathophysiology of neoplastic transformations have also been deciphered. These new findings may prompt SLAM to be considered as new tumor markers, diagnostic tools or potential therapeutic targets for controlling the tumor progression. In this review, we summarize the major observations describing the implications and features of SLAM in oncology and discuss the therapeutic potential attributed to these molecules.

9.
Oncotarget ; 7(22): 32493-503, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27081035

RESUMO

Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Transfecção
10.
Oncotarget ; 7(9): 9832-43, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26799423

RESUMO

Polo-like kinase PLK1 is a cell cycle protein that plays multiple roles in promoting cell cycle progression. Among the many roles, the most prominent role of PLK1 is to regulate the mitotic spindle formation checkpoint at the M-phase. Recently we reported the expression of SLAMF3 in Hepatocytes and show that it is down regulated in tumor cells of hepatocellular carcinoma (HCC). We also show that the forced high expression level of SLAMF3 in HCC cells controls proliferation by inhibiting the MAPK ERK/JNK and the mTOR pathways. In the present study, we provide evidence that the inhibitory effect of SLAMF3 on HCC proliferation occurs through Retinoblastoma (RB) factor and PLK1-dependent pathway. In addition to the inhibition of MAPK ERK/JNK and the mTOR pathways, expression of SLAMF3 in HCC retains RB factor in its hypophosphorylated active form, which in turn inactivates E2F transcription factor, thereby repressing the expression and activation of PLK1. A clear inverse correlation was also observed between SLAMF3 and PLK expression in patients with HCC. In conclusion, the results presented here suggest that the tumor suppressor potential of SLAMF3 occurs through activation of RB that represses PLK1. We propose that the induction of a high expression level of SLAMF3 in cancerous cells could control cellular mitosis and block tumor progression.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/patologia , Mitose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína do Retinoblastoma/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quinase 1 Polo-Like
11.
Cancer Lett ; 356(2 Pt B): 971-7, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25444922

RESUMO

Sorafenib is the treatment of reference for advanced hepatocellular carcinoma (HCC), the most frequent form of primary liver tumour. The loss of function of the retinoblastoma (Rb) protein is an important event during liver carcinogenesis, but it is unclear whether the Rb status modulates the response of HCC cells to sorafenib. Here, we examined this question in HCC cells with reduced levels of Rb achieved through stable RNA interference. We show that HCC cells with reduced levels of Rb exhibit a two- to threefold increase in cell death induction upon exposure to sorafenib compared with controls. Sorafenib treatment of Balb/c nude mice that received tumour xenografts derived from HCC cells with reduced Rb levels resulted in complete tumour regression in 50% of the animals treated, compared with tumour stabilization in mice that received control cells. We show that, upon exposure to sorafenib, the Rb-negative status of HCC cells promotes the occurrence of ferroptosis, a form of oxidative necrosis. The findings highlight the role of Rb in the response of HCC cells to sorafenib and the regulation of ferroptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Necrose , Niacinamida/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Proteína do Retinoblastoma/metabolismo , Animais , Western Blotting , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Niacinamida/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Gut Microbes ; 5(3): 313-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971581

RESUMO

The neonatal gut is rapidly colonized by a newly dominant group of commensal Escherichia coli strains among which a large proportion produces a genotoxin called colibactin. In order to analyze the short- and long-term effects resulting from such evolution, we developed a rat model mimicking the natural transmission of E. coli from mothers to neonates. Genotoxic and non-genotoxic E. coli strains were equally transmitted to the offspring and stably colonized the gut across generations. DNA damage was only detected in neonates colonized with genotoxic E. coli strains. Signs of genotoxic stress such as anaphase bridges, higher occurrence of crypt fission and accelerated renewal of the mature epithelium were detected at adulthood. In addition, we observed alterations of secretory cell populations and gut epithelial barrier. Our findings illustrate how critical is the genotype of E. coli strains acquired at birth for gut homeostasis at adulthood.


Assuntos
Dano ao DNA/efeitos dos fármacos , Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Animais , Feminino , Humanos , Recém-Nascido , Masculino , Modelos Animais , Gravidez , Ratos Wistar
13.
PLoS One ; 9(6): e99601, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24927415

RESUMO

Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. We recently characterized for the first time the expression of Signaling Lymphocyte Activating Molecule 3 (SLAMF3) in human hepatocytes and here, we report that SLAMF3 interacts with the HCV viral protein E2 and is implicated in HCV entry process. We found a strong correlation between SLAMF3 expression level and hepatocyte susceptibility to HCV infection. The use of specific siRNAs to down-modulate SLAMF3 expression and SLAMF3-blocking antibodies both decreased the hepatocytes susceptibility to HCV infection. Moreover, SLAMF3 over-expression significantly increased susceptibility to HCV infection. Interestingly, experiments with peptides derived from each SLAMF3 domain showed that the first N-terminal extracellular domain is essential for interaction with HCV particles. Finally, we showed that recombinant HCV envelop protein E2 can bind SLAMF3 and that anti-SLAMF3 antibodies inhibited specifically this interaction. Overall, our results revealed that SLAMF3 plays a role during HCV entry, likely by enhancing entry of viral particle within hepatocytes.


Assuntos
Antígenos CD/metabolismo , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas do Envelope Viral/metabolismo , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/imunologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Hepatite C/genética , Hepatite C/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária , Tetraspanina 28/farmacologia , Proteínas do Envelope Viral/imunologia
14.
J Infect Dis ; 210(2): 285-94, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24489107

RESUMO

Sepsis is a life-threatening infection. Escherichia coli is the first known cause of bacteremia leading to sepsis. Lymphopenia was shown to predict bacteremia better than conventional markers of infection. The pks genomic island, which is harbored by extraintestinal pathogenic E. coli (ExPEC) and encodes the genotoxin colibactin, is epidemiologically associated with bacteremia. To investigate a possible relationship between colibactin and lymphopenia, we examined the effects of transient infection of lymphocytes with bacteria that were and those that were not producing the genotoxin. A mouse model of sepsis was used to compare the virulence of a clinical ExPEC isolate with its isogenic mutant impaired for the production of colibactin. We observed that colibactin induced double-strand breaks in the DNA of infected lymphocytes, leading to cell cycle arrest and to cell death by apoptosis. E. coli producing colibactin induced a more profound lymphopenia in septicemic mice, compared with the isogenic mutant unable to produce colibactin. In a sepsis model in which the mice were treated by rehydration and antibiotics, the production of colibactin by the bacteria was associated with a significantly lower survival rate. In conclusion, we demonstrate that production of colibactin by E. coli exacerbates lymphopenia associated with septicemia and could impair the chances to survive sepsis.


Assuntos
Infecções por Escherichia coli/patologia , Escherichia coli/patogenicidade , Linfopenia/induzido quimicamente , Mutagênicos/toxicidade , Peptídeos/toxicidade , Policetídeos/toxicidade , Sepse/patologia , Fatores de Virulência/toxicidade , Animais , Morte Celular , Quebras de DNA de Cadeia Dupla , Infecções por Escherichia coli/complicações , Feminino , Deleção de Genes , Linfócitos/microbiologia , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Sepse/complicações , Análise de Sobrevida , Virulência , Fatores de Virulência/genética
15.
PLoS One ; 8(12): e82918, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376606

RESUMO

Although hepatocellular carcinoma (HCC) is one of the most common malignancies and constitutes the third leading cause of cancer-related deaths, the underlying molecular mechanisms are not fully understood. In the present study, we demonstrate for the first time that hepatocytes express signalling lymphocytic activation molecule family member 3 (SLAMF3/CD229) but not other SLAMF members. We provide evidence to show that SLAMF3 is involved in the control of hepatocyte proliferation and in hepatocellular carcinogenesis. SLAMF3 expression is significantly lower in primary human HCC samples and HCC cell lines than in human healthy primary hepatocytes. In HCC cell lines, the restoration of high levels of SLAMF3 expression inhibited cell proliferation and migration and enhanced apoptosis. Furthermore, SLAMF3 expression was associated with inhibition of HCC xenograft progression in the nude mouse model. The restoration of SLAMF3 expression levels also decreased the phosphorylation of MAPK ERK1/2, JNK and mTOR. In samples from resected HCC patients, SLAMF3 expression levels were significantly lower in tumorous tissues than in peritumoral tissues. Our results identify SLAMF3 as a specific marker of normal hepatocytes and provide evidence for its potential role in the control of proliferation of HCC cells.


Assuntos
Antígenos CD/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Animais , Antígenos CD/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Injeções Subcutâneas , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transplante de Neoplasias , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
16.
PLoS Pathog ; 9(7): e1003437, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853582

RESUMO

In Escherichia coli, the biosynthetic pathways of several small iron-scavenging molecules known as siderophores (enterobactin, salmochelins and yersiniabactin) and of a genotoxin (colibactin) are known to require a 4'-phosphopantetheinyl transferase (PPTase). Only two PPTases have been clearly identified: EntD and ClbA. The gene coding for EntD is part of the core genome of E. coli, whereas ClbA is encoded on the pks pathogenicity island which codes for colibactin. Interestingly, the pks island is physically associated with the high pathogenicity island (HPI) in a subset of highly virulent E. coli strains. The HPI carries the gene cluster required for yersiniabactin synthesis except for a gene coding its cognate PPTase. Here we investigated a potential interplay between the synthesis pathways leading to the production of siderophores and colibactin, through a functional interchangeability between EntD and ClbA. We demonstrated that ClbA could contribute to siderophores synthesis. Inactivation of both entD and clbA abolished the virulence of extra-intestinal pathogenic E. coli (ExPEC) in a mouse sepsis model, and the presence of either functional EntD or ClbA was required for the survival of ExPEC in vivo. This is the first report demonstrating a connection between multiple phosphopantetheinyl-requiring pathways leading to the biosynthesis of functionally distinct secondary metabolites in a given microorganism. Therefore, we hypothesize that the strict association of the pks island with HPI has been selected in highly virulent E. coli because ClbA is a promiscuous PPTase that can contribute to the synthesis of both the genotoxin and siderophores. The data highlight the complex regulatory interaction of various virulence features with different functions. The identification of key points of these networks is not only essential to the understanding of ExPEC virulence but also an attractive and promising target for the development of anti-virulence therapy strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Sideróforos/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Proteínas de Bactérias/genética , Enterobactina/análogos & derivados , Enterobactina/biossíntese , Escherichia coli/enzimologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Ilhas Genômicas , Glicopeptídeos/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenóis/metabolismo , Sepse/metabolismo , Sepse/microbiologia , Tiazóis/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Virulência
17.
Gut Microbes ; 3(6): 501-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22895085

RESUMO

Oral administration of the probiotic bacterium Escherichia coli Nissle 1917 improves chronic inflammatory bowel diseases, but the molecular basis for this therapeutic efficacy is unknown. E. coli Nissle 1917 harbors a cluster of genes coding for the biosynthesis of hybrid nonribosomal peptide-polyketide(s). This biosynthetic pathway confers the ability for bacteria to induce DNA double strand breaks in eukaryotic cells. Here we reveal that inactivation of the clbA gene within this genomic island abrogated the ability for the strain to induce DNA damage and chromosomal abnormalities in non-transformed cultured rat intestinal epithelial cells but is required for the probiotic activity of E. coli Nissle 1917. Thus, evaluation of colitis severity induced in rodent fed with E. coli Nissle 1917 or an isogenic non-genotoxic mutant demonstrated the need for a functional biosynthetic pathway both in the amelioration of the disease and in the modulation of cytokine expression. Feeding rodents with a complemented strain for which genotoxicity was restored confirmed that this biosynthetic pathway contributes to the health benefits of the probiotic by modulating its immunomodulatory properties. Our data provide additional evidence for the benefit of this currently used probiotic in colitis but remind us that an efficient probiotic may also have side effects as any other medication.


Assuntos
Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Doenças Inflamatórias Intestinais/terapia , Mutagênicos/metabolismo , Probióticos/administração & dosagem , Animais , Linhagem Celular , Colite/microbiologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Escherichia coli/genética , Técnicas de Inativação de Genes , Masculino , Policetídeos/metabolismo , Ratos , Ratos Wistar
18.
Proc Natl Acad Sci U S A ; 107(25): 11537-42, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534522

RESUMO

Escherichia coli is a normal inhabitant of the human gut. However, E. coli strains of phylogenetic group B2 harbor a genomic island called "pks" that codes for the production of a polyketide-peptide genotoxin, Colibactin. Here we report that in vivo infection with E. coli harboring the pks island, but not with a pks isogenic mutant, induced the formation of phosphorylated H2AX foci in mouse enterocytes. We show that a single, short exposure of cultured mammalian epithelial cells to live pks(+) E. coli at low infectious doses induced a transient DNA damage response followed by cell division with signs of incomplete DNA repair, leading to anaphase bridges and chromosome aberrations. Micronuclei, aneuploidy, ring chromosomes, and anaphase bridges persisted in dividing cells up to 21 d after infection, indicating occurrence of breakage-fusion-bridge cycles and chromosomal instability. Exposed cells exhibited a significant increase in gene mutation frequency and anchorage-independent colony formation, demonstrating the infection mutagenic and transforming potential. Therefore, colon colonization with these E. coli strains harboring the pks island could contribute to the development of sporadic colorectal cancer.


Assuntos
Dano ao DNA , Escherichia coli/metabolismo , Instabilidade Genômica , Intestinos/microbiologia , Animais , Células CHO , Adesão Celular , Aberrações Cromossômicas , Cricetinae , Cricetulus , Reparo do DNA , Escherichia coli/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutagênicos/metabolismo , Mutação , Neoplasias/metabolismo
19.
Hum Immunol ; 69(11): 708-14, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18817827

RESUMO

Regulatory T lymphocytes unequivocally play a major role in the maintenance of immunologic homeostasis. The first descriptions of regulatory T lymphocytes concerned CD8(+) cells, but this field was brought into discredit when some of its central tenets turned out to be erroneous. CD4(+) regulatory T cells took over and, with the help of newly developed molecular tools, rapidly were phenotypically and functionally characterized. We now know that these cells control a large variety of immune responses. However some observations of in vitro or in vivo immune regulation could not be explained with CD4(+) regulatory T cell activity and depended on the action of a variety of CD8(+) T cell populations. In recent years, substantial progress has been made in the phenotypic and functional characterization of CD8(+) regulatory T cells. These cells play a role in the control of intestinal immunity, immunopathology, and autoimmunity, as well as in immune privilege of the eye, in oral tolerance, and in prevention of graft-versus-host disease and graft-rejection. The suppressor effector mechanisms used by these cells are in part shared with CD4(+) regulatory T cells and in part unique to this population. We here review the current literature on naturally occurring and experimentally induced murine CD8(+) regulatory T-cell populations.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica , Intestinos/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Camundongos , Linfócitos T Reguladores/imunologia
20.
Gastroenterology ; 131(6): 1775-85, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17087950

RESUMO

BACKGROUND & AIMS: Immune responses to innocuous intestinal antigens appear tightly controlled by regulatory T lymphocytes. While CD4+ T lymphocytes have recently attracted the most attention, CD8+ regulatory T-cell populations are also believed to play an important role in control of mucosal immunity. However, CD8+ regulatory T-cell function has mainly been studied in vitro and no direct in vivo evidence exists that they can control mucosal immune responses. We investigated the capacity of CD8+CD28- T cells to prevent experimental inflammatory bowel disease (IBD) in mice. METHODS: CD8+CD28- regulatory T cells were isolated from unmanipulated mice and tested for their capacity to inhibit T-cell activation in allogeneic mixed lymphocyte cultures in vitro and to prevent IBD induced by injection of CD4+CD45RB(high) cells into syngeneic immunodeficient RAG-2 mutant mice. RESULTS: CD8+CD28- T lymphocytes inhibited proliferation and interferon gamma production by CD4+ responder T cells in vitro. CD8+CD28- regulatory T cells freshly isolated from spleen or gut efficiently prevented IBD induced by transfer of colitogenic T cells into immunodeficient hosts. Regulatory CD8+CD28- T cells incapable of producing interleukin-10 did not prevent colitis. Moreover, IBD induced with colitogenic T cells incapable of responding to transforming growth factor beta could not be prevented with CD8+CD28- regulatory T cells. CD8+CD28+ T cells did not inhibit in vitro or in vivo immune responses. CONCLUSIONS: Our findings show that naturally occurring CD8+CD28- regulatory T lymphocytes can prevent experimental IBD in mice and suggest that these cells may play an important role in control of mucosal immunity.


Assuntos
Antígenos CD28/metabolismo , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Doenças Inflamatórias Intestinais/prevenção & controle , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fenótipo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...