Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(1): 123-131, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229758

RESUMO

Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead 1, we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution. Our strategy involved the use of predicted volume ligand efficiency to advance compounds with greater potential for low human doses down our screening funnel. We also applied minimized electrostatic potentials (Vmin) calculations for hydrogen bond acceptor sites to rationalize P-gp SAR. Together, our strategies enabled the alignment of a lower human dose with reduced P-gp efflux, and favorable PXR selectivity for the discovery of compound 12.

2.
NPJ Parkinsons Dis ; 9(1): 24, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774388

RESUMO

The pathogenesis and clinical heterogeneity of Parkinson's disease (PD) have been evaluated from molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis of cerebrospinal fluid (CSF) opened new opportunities for scrutinizing this heterogeneity. To date, this is the most comprehensive CSF-based proteomics profiling study in PD with 569 patients (350 idiopathic patients, 65 GBA + mutation carriers and 154 LRRK2 + mutation carriers), 534 controls, and 4135 proteins analyzed. Combining CSF aptamer-based proteomics with genetics we determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary statistics from the largest PD genome wide association study (GWAS) identified 68 potential causal proteins by Mendelian randomization. The top causal protein, GPNMB, was previously reported to be upregulated in the substantia nigra of PD patients. We also compared the CSF proteomes of patients and controls. Proteome differences between GBA + patients and unaffected GBA + controls suggest degeneration of dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. In the LRRK2 + subcohort we found dysregulated lysosomal degradation, altered alpha-synuclein processing, and neurotransmission. Proteome differences between idiopathic patients and controls suggest increased neuroinflammation, mitochondrial dysfunction/oxidative stress, altered iron metabolism and potential neuroprotection mediated by vasoactive substances. Finally, we used proteomic data to stratify idiopathic patients into "endotypes". The identified endotypes show differences in cognitive and motor disease progression based on previously reported protein-based risk scores.Our findings not only contribute to the identification of new therapeutic targets but also to shape personalized medicine in CNS neurodegeneration.

3.
ACS Med Chem Lett ; 14(2): 146-155, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793422

RESUMO

Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS). Herein, we report the optimization of a bicyclic pyrazole amide GCS inhibitor discovered through HTS to low dose, oral, CNS penetrant, bicyclic pyrazole urea GCSi's with in vivo activity in mouse models and ex vivo activity in iPSC neuronal models of synucleinopathy and lysosomal dysfunction. This was accomplished through the judicious use of parallel medicinal chemistry, direct-to-biology screening, physics-based rationalization of transporter profiles, pharmacophore modeling, and use a novel metric: volume ligand efficiency.

4.
J Neurosci ; 43(3): 501-521, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36639889

RESUMO

The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations GBA1, which encodes for the lysosomal enzyme, glucocerebrosidase. Reduced glucocerebrosidase activity associates with an accumulation of abnormal α-synuclein (α-syn) called Lewy pathology, which characterizes PD. PD patients heterozygous for the neuronotypic GBA1L444P mutation (GBA1+/L444P) have a 5.6-fold increased risk of cognitive impairments. In this study, we used GBA1+/L444P mice of either sex to determine its effects on lipid metabolism, expression of synaptic proteins, behavior, and α-syn inclusion formation. At 3 months of age, GBA1+/L444P mice demonstrated impaired contextual fear conditioning, and increased motor activity. Hippocampal levels of vGLUT1 were selectively reduced in GBA1+/L444P mice. We show, using mass spectrometry, that GBA1L444P expression increased levels of glucosylsphingosine, but not glucosylceramide, in the brains and serum of GBA1+/L444P mice. Templated induction of α-syn pathology in mice showed an increase in α-syn inclusion formation in the hippocampus of GBA1+/L444P mice compared with GBA1+/+ mice, but not in the cortex, or substantia nigra pars compacta. Pathologic α-syn reduced SNc dopamine neurons by 50% in both GBA1+/+ and GBA1+/L444P mice. Treatment with a GlcCer synthase inhibitor did not affect abundance of α-syn inclusions in the hippocampus or rescue dopamine neuron loss. Overall, these data suggest the importance of evaluating the contribution of elevated glucosylsphingosine to PD phenotypes. Further, our data suggest that expression of neuronotypic GBA1L444P may cause defects in the hippocampus, which may be a mechanism by which cognitive decline is more prevalent in individuals with GBA1-PD.SIGNIFICANCE STATEMENT Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are both pathologically characterized by abnormal α-synuclein (α-syn). Mutant GBA1 is a risk factor for both PD and DLB. Our data show the expression of neuronotypic GBA1L444P impairs behaviors related to hippocampal function, reduces expression of a hippocampal excitatory synaptic protein, and that the hippocampus is more susceptible to α-syn inclusion formation. Further, our data strengthen support for the importance of evaluating the contribution of glucosylsphingosine to PD phenotypes. These outcomes suggest potential mechanisms by which GBA1L444P contributes to the cognitive symptoms clinically observed in PD and DLB. Our findings also highlight the importance of glucosylsphingosine as a relevant biomarker for future therapeutics.


Assuntos
Glucosilceramidase , Doença de Parkinson , Sinucleinopatias , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Hipocampo/metabolismo , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/patologia
5.
J Lipid Res ; 63(6): 100218, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489416

RESUMO

A major challenge of lipidomics is to determine and quantify the precise content of complex lipidomes to the exact lipid molecular species. Often, multiple methods are needed to achieve sufficient lipidomic coverage to make these determinations. Multiplexed targeted assays offer a practical alternative to enable quantitative lipidomics amenable to quality control standards within a scalable platform. Herein, we developed a multiplexed normal phase liquid chromatography-hydrophilic interaction chromatography multiple reaction monitoring method that quantifies lipid molecular species across over 20 lipid classes spanning wide polarities in a single 20-min run. Analytical challenges such as in-source fragmentation, isomer separations, and concentration dynamics were addressed to ensure confidence in selectivity, quantification, and reproducibility. Utilizing multiple MS/MS product ions per lipid species not only improved the confidence of lipid identification but also enabled the determination of relative abundances of positional isomers in samples. Lipid class-based calibration curves were applied to interpolate lipid concentrations and guide sample dilution. Analytical validation was performed following FDA Bioanalytical Method Validation Guidance for Industry. We report repeatable and robust quantitation of 900 lipid species measured in NIST-SRM-1950 plasma, with over 700 lipids achieving inter-assay variability below 25%. To demonstrate proof of concept for biomarker discovery, we analyzed plasma from mice treated with a glucosylceramide synthase inhibitor, benzoxazole 1. We observed expected reductions in glucosylceramide levels in treated animals but, more notably, identified novel lipid biomarker candidates from the plasma lipidome. These data highlight the utility of this qualified lipidomic platform for enabling biological discovery.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Lipídeos , Camundongos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
6.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35419585

RESUMO

Heterozygous mutations in the GBA1 gene - encoding lysosomal glucocerebrosidase (GCase) - are the most common genetic risk factors for Parkinson's disease (PD). Experimental evidence suggests a correlation between decreased GCase activity and accumulation of alpha-synuclein (aSyn). To enable a better understanding of the relationship between aSyn and GCase activity, we developed and characterized two mouse models that investigate aSyn pathology in the context of reduced GCase activity. The first model used constitutive overexpression of wild-type human aSyn in the context of the homozygous GCase activity-reducing D409V mutant form of GBA1. Although increased aSyn pathology and grip strength reductions were observed in this model, the nigrostriatal system remained largely intact. The second model involved injection of aSyn preformed fibrils (PFFs) into the striatum of the homozygous GBA1 D409V knock-in mouse model. The GBA1 D409V mutation did not exacerbate the pathology induced by aSyn PFF injection. This study sheds light on the relationship between aSyn and GCase in mouse models, highlighting the impact of model design on the ability to model a relationship between these proteins in PD-related pathology.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Neurobiol Dis ; 159: 105507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509608

RESUMO

Mutations in the lysosomal enzyme glucocerebrosidase (GCase, GBA1 gene) are the most common genetic risk factor for developing Parkinson's disease (PD). GCase metabolizes the glycosphingolipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Mutations in GBA1 reduce enzyme activity and the resulting accumulation of glycosphingolipids may contribute to the underlying pathology of PD, possibly via altering lysosomal function. While reduction of GCase activity exacerbates α-synuclein (α-syn) aggregation, it has not been determined that this effect is the result of altered glycosphingolipid levels and lysosome function or some other effect of altering GCase. The glycosphingolipid GlcCer is synthesized by a single enzyme, glucosylceramide synthase (GCS), and small molecule inhibitors (GCSi) reduce cellular glycosphingolipid levels. In the present studies, we utilize a preformed fibril (PFF) rodent primary neuron in vitro model of α-syn pathology to investigate the relationship between glycosphingolipid levels, α-syn pathology, and lysosomal function. In primary cultures, pharmacological inhibition of GCase and D409V GBA1 mutation enhanced accumulation of glycosphingolipids and insoluble phosphorylated α-syn. Administration of a novel small molecule GCSi, benzoxazole 1 (BZ1), significantly decreased glycosphingolipid concentrations in rodent primary neurons and reduced α-syn pathology. BZ1 rescued lysosomal deficits associated with the D409V GBA1 mutation and α-syn PFF administration, and attenuated α-syn induced neurodegeneration of dopamine neurons. In vivo studies revealed BZ1 had pharmacological activity and reduced glycosphingolipids in the mouse brain to a similar extent observed in neuronal cultures. These data support the hypothesis that reduction of glycosphingolipids through GCS inhibition may impact progression of synucleinopathy and BZ1 is useful tool to further examine this important biology.


Assuntos
Benzoxazóis/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucosilceramidase/genética , Glucosiltransferases/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Lisossomos/efeitos dos fármacos , Sinucleinopatias/metabolismo , alfa-Sinucleína/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Técnicas In Vitro , Lisossomos/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Cultura Primária de Células , Agregados Proteicos , Ratos , Sinucleinopatias/genética , alfa-Sinucleína/metabolismo
8.
Neurobiol Aging ; 106: 12-25, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225000

RESUMO

Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy. Herein, we characterize the impacts pre-formed fibrils (PFFs) of recombinant, human αSyn have in mice overexpressing human A30P αSyn, a mutation associated with autosomal dominant PD. A30P mouse brain contains detergent insoluble αSyn biochemically similar to PD brain, and these mice develop Lewy-like synucleinopathy with age. Administration of PFFs in A30P mice resulted in regionally-specific accumulations of phosphorylated synuclein, microglial induction and a motor phenotype that differed from PFF-induced effects in wildtype mice. Surprisingly, PFF-induced losses of tyrosine hydroxylase were similar in A30P and wildtype mice. Thus, the PFF-A30P model recapitulates key aspects of synucleinopathy with induction of microglia, creating an appropriate system for evaluating neurodegenerative therapeutics.


Assuntos
Microglia/patologia , Sinucleinopatias/etiologia , Sinucleinopatias/patologia , alfa-Sinucleína/efeitos adversos , Animais , Modelos Animais de Doenças , Expressão Gênica , Camundongos Transgênicos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Sinucleinopatias/genética , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
J Pharmacol Exp Ther ; 374(2): 252-263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32493725

RESUMO

Deposition of hyperphosphorylated and aggregated tau protein in the central nervous system is characteristic of Alzheimer disease and other tauopathies. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification, and O-GlcNAcylation of tau has been shown to influence tau phosphorylation and aggregation. Inhibition of O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc moieties, is a novel strategy to attenuate the formation of pathologic tau. Here we described the in vitro and in vivo pharmacological properties of a novel and selective OGA inhibitor, MK-8719. In vitro, this compound is a potent inhibitor of the human OGA enzyme with comparable activity against the corresponding enzymes from mouse, rat, and dog. In vivo, oral administration of MK-8719 elevates brain and peripheral blood mononuclear cell O-GlcNAc levels in a dose-dependent manner. In addition, positron emission tomography imaging studies demonstrate robust target engagement of MK-8719 in the brains of rats and rTg4510 mice. In the rTg4510 mouse model of human tauopathy, MK-8719 significantly increases brain O-GlcNAc levels and reduces pathologic tau. The reduction in tau pathology in rTg4510 mice is accompanied by attenuation of brain atrophy, including reduction of forebrain volume loss as revealed by volumetric magnetic resonance imaging analysis. These findings suggest that OGA inhibition may reduce tau pathology in tauopathies. However, since hundreds of O-GlcNAcylated proteins may be influenced by OGA inhibition, it will be critical to understand the physiologic and toxicological consequences of chronic O-GlcNAc elevation in vivo. SIGNIFICANCE STATEMENT: MK-8719 is a novel, selective, and potent O-linked N-acetylglucosamine (O-GlcNAc)-ase (OGA) inhibitor that inhibits OGA enzyme activity across multiple species with comparable in vitro potency. In vivo, MK-8719 elevates brain O-GlcNAc levels, reduces pathological tau, and ameliorates brain atrophy in the rTg4510 mouse model of tauopathy. These findings indicate that OGA inhibition may be a promising therapeutic strategy for the treatment of Alzheimer disease and other tauopathies.


Assuntos
Inibidores Enzimáticos/farmacologia , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Proteínas tau/metabolismo , Animais , Atrofia/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Células PC12 , Ratos , Tauopatias/patologia , Tauopatias/fisiopatologia
10.
Brain Res ; 1737: 146814, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234514

RESUMO

Analgesic properties of orthosteric agonists of the muscarinic M4 receptor subtype have been documented in literature reports, with evidence from pharmacological and in vivo receptor knock out (KO) studies. Constitutive M4 receptor KO mice demonstrated an increased response in the formalin pain model, supporting this hypothesis. Two novel positive allosteric modulators (PAM) of the M4 receptor, Compounds 1 and 2, were characterized in rodent models of acute nociception. Results indicated decreased time spent on nociceptive behaviors in the mouse formalin model, and efficacy in the mouse tail flick assay. The analgesic-like effects of Compounds 1 and 2 were shown to be on target, as the compounds lacked any activity in constitutive M4 KO mice, while retaining activity in wild type control littermates. The analgesic-like effects of Compounds 1 and 2 were significantly diminished in KO mice that have selective deletion of the M4 receptor in neurons that co-express the dopaminergic D1 receptor subtype, suggesting a centrally-mediated effect on nociception. The opioid antagonist naloxone did not diminish the effect of Compound 1, indicating the effects of Compound 1 are not secondarily linked to opioid pathways. Compound 1 was evaluated in the rat, where it demonstrated analgesic-like effects in tail flick and a subpopulation of spinal nociceptive sensitive neurons, suggesting some involvement of spinal mechanisms of nociceptive modulation. These studies indicate that M4 PAMs may be a tractable target for pain management assuming an appropriate safety profile, and it appears likely that both spinal and supraspinal pathways may mediate the antinociceptive-like effects.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Receptor Muscarínico M4/agonistas , Regulação Alostérica/fisiologia , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Colinérgicos/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/fisiologia , Dor/metabolismo , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M4/efeitos dos fármacos , Receptor Muscarínico M4/metabolismo
11.
J Med Chem ; 62(22): 10062-10097, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31487175

RESUMO

Inhibition of O-GlcNAcase (OGA) has emerged as a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Beginning with carbohydrate-based lead molecules, we pursued an optimization strategy of reducing polar surface area to align the desired drug-like properties of potency, selectivity, high central nervous system (CNS) exposure, metabolic stability, favorable pharmacokinetics, and robust in vivo pharmacodynamic response. Herein, we describe the medicinal chemistry and pharmacological studies that led to the identification of (3aR,5S,6S,7R,7aR)-5-(difluoromethyl)-2-(ethylamino)-3a,6,7,7a-tetrahydro-5H-pyrano[3,2-d]thiazole-6,7-diol 42 (MK-8719), a highly potent and selective OGA inhibitor with excellent CNS penetration that has been advanced to first-in-human phase I clinical trials.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Cães , Descoberta de Drogas , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/farmacocinética , Humanos , Macaca mulatta , Masculino , Células PC12 , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Tauopatias/tratamento farmacológico , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/metabolismo
12.
Hum Mol Genet ; 28(19): 3244-3254, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261387

RESUMO

Multiple genome-wide association studies (GWAS) in Parkinson disease (PD) have identified a signal at chromosome 4p16.3; however, the causal variant has not been established for this locus. Deep investigation of the region resulted in one identified variant, the rs34311866 missense SNP (p.M393T) in TMEM175, which is 20 orders of magnitude more significant than any other SNP in the region. Because TMEM175 is a lysosomal gene that has been shown to influence α-synuclein phosphorylation and autophagy, the p.M393T variant is an attractive candidate, and we have examined its effect on TMEM175 protein and PD-related biology. After knocking down each of the genes located under the GWAS peak via multiple shRNAs, only TMEM175 was found to consistently influence accumulation of phosphorylated α-synuclein (p-α-syn). Examination of the p.M393T variant showed effects on TMEM175 function that were intermediate between the wild-type (WT) and knockout phenotypes, with reduced regulation of lysosomal pH in response to starvation and minor changes in clearance of autophagy substrates, reduced lysosomal localization, and increased accumulation of p-α-syn. Finally, overexpression of WT TMEM175 protein reduced p-α-syn, while overexpression of the p.M393T variant resulted in no change in α-synuclein phosphorylation. These results suggest that the main signal in the chromosome 4p16.3 PD risk locus is driven by the TMEM175 p.M393T variant. Modulation of TMEM175 may impact α-synuclein biology and therefore may be a rational therapeutic strategy for PD.


Assuntos
Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Canais de Potássio/genética , alfa-Sinucleína/metabolismo , Linhagem Celular , Cromossomos Humanos Par 4/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Fosforilação , Canais de Potássio/metabolismo
13.
J Neuroinflammation ; 15(1): 256, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189875

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disease with pathological hallmarks including the formation of extracellular aggregates of amyloid-beta (Aß) known as plaques and intracellular tau tangles. Coincident with the formation of Aß plaques is recruitment and activation of glial cells to the plaque forming a plaque niche. In addition to histological data showing the formation of the niche, AD genetic studies have added to the growing appreciation of how dysfunctional glia pathways drive neuropathology, with emphasis on microglia pathways. Genomic approaches enable comparisons of human disease profiles between different mouse models informing on their utility to evaluate secondary changes to triggers such as Aß deposition. METHODS: In this study, we utilized two animal models of AD to examine and characterize the AD-associated pathology: the Tg2576 Swedish APP (KM670/671NL) and TgCRND8 Swedish plus Indiana APP (KM670/671NL + V717F) lines. We used laser capture microscopy (LCM) to isolate samples surrounding Thio-S positive plaques from distal non-plaque tissue. These samples were then analyzed using RNA sequencing. RESULTS: We determined age-associated transcriptomic differences between two similar yet distinct APP transgenic mouse models, known to differ in proportional amyloidogenic species and plaque deposition rates. In Tg2576, human AD gene signatures were not observed despite profiling mice out to 15 months of age. TgCRND8 mice however showed progressive and robust induction of lysomal, neuroimmune, and ITIM/ITAM-associated gene signatures overlapping with prior human AD brain transcriptomic studies. Notably, RNAseq analyses highlighted the vast majority of transcriptional changes observed in aging TgCRND8 cortical brain homogenates were in fact specifically enriched within the plaque niche samples. Data uncovered plaque-associated enrichment of microglia-related genes such as ITIM/ITAM-associated genes and pathway markers of phagocytosis. CONCLUSION: This work may help guide improved translational value of APP mouse models of AD, particularly for strategies aimed at targeting neuroimmune and neurodegenerative pathways, by demonstrating that TgCRND8 more closely recapitulates specific human AD-associated transcriptional responses.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/genética , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/patologia , Correlação de Dados , Modelos Animais de Doenças , Humanos , Microdissecção e Captura a Laser , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Placa Amiloide/patologia , RNA Mensageiro/metabolismo , Transcriptoma
14.
ACS Med Chem Lett ; 9(8): 815-820, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30128073

RESUMO

Herein we describe the development of a series of pyrazolopyrimidinone phosphodiesterase 2A (PDE2) inhibitors using structure-guided lead identification and design. The series was derived from informed chemotype replacement based on previously identified internal leads. The initially designed compound 3, while potent on PDE2, displayed unsatisfactory selectivity against the other PDE2 isoforms. Compound 3 was subsequently optimized for improved PDE2 activity and isoform selectivity. Insights into the origins of PDE2 selectivity are described and verified using cocrystallography. An optimized lead, 4, demonstrated improved performance in both a rodent and a nonhuman primate cognition model.

15.
PLoS One ; 13(4): e0195486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29624602

RESUMO

Although tau pathology, behavioral deficits, and neuronal loss are observed in patients with tauopathies, the relationship between these endpoints has not been clearly established. Here we found that rTg4510 mice, which overexpress human mutant tau in the forebrain, develop progressive age-dependent increases in locomotor activity (LMA), which correlates with neurofibrillary tangle (NFT) pathology, hyperphosphorylated tau levels, and brain atrophy. To further clarify the relationship between these endpoints, we treated the rTg4510 mice with either doxycycline to reduce mutant tau expression or an O-GlcNAcase inhibitor Thiamet G, which has been shown to ameliorate tau pathology in animal models. We found that both doxycycline and Thiamet G treatments starting at 2 months of age prevented the progression of hyperactivity, slowed brain atrophy, and reduced brain hyperphosphorylated tau. In contrast, initiating doxycycline treatment at 4 months reduced neither brain hyperphosphorylated tau nor hyperactivity, further confirming the relationship between these measures. Collectively, our results demonstrate a unique behavioral phenotype in the rTg4510 mouse model of tauopathy that strongly correlates with disease progression, and that early interventions which reduce tau pathology ameliorate the progression of the locomotor dysfunction. These findings suggest that better understanding the relationship between locomotor deficits and tau pathology in the rTg4510 model may improve our understanding of the mechanisms underlying behavioral disturbances in patients with tauopathies.


Assuntos
Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Doxiciclina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Piranos/uso terapêutico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tauopatias/patologia , Tauopatias/fisiopatologia , Tiazóis/uso terapêutico , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Proteínas tau/genética
16.
Bioorg Med Chem Lett ; 26(17): 4362-6, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491711

RESUMO

Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer's disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility.


Assuntos
Inibidores Enzimáticos/síntese química , Compostos Heterocíclicos/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Cristalografia por Raios X , Cães , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Humanos , Concentração Inibidora 50 , Peso Molecular , Ratos , Solubilidade
17.
Front Neurol ; 6: 140, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157418

RESUMO

The mesencephalic (or midbrain) locomotor region (MLR) was first described in 1966 by Shik and colleagues, who demonstrated that electrical stimulation of this region induced locomotion in decerebrate (intercollicular transection) cats. The pedunculopontine tegmental nucleus (PPT) cholinergic neurons and midbrain extrapyramidal area (MEA) have been suggested to form the neuroanatomical basis for the MLR, but direct evidence for the role of these structures in locomotor behavior has been lacking. Here, we tested the hypothesis that the MLR is composed of non-cholinergic spinally projecting cells in the lateral pontine tegmentum. Our results showed that putative MLR neurons medial to the PPT and MEA in rats were non-cholinergic, glutamatergic, and express the orexin (hypocretin) type 2 receptors. Fos mapping correlated with motor behaviors revealed that the dorsal and ventral MLR are activated, respectively, in association with locomotion and an erect posture. Consistent with these findings, chemical stimulation of the dorsal MLR produced locomotion, whereas stimulation of the ventral MLR caused standing. Lesions of the MLR (dorsal and ventral regions together) resulted in cataplexy and episodic immobility of gait. Finally, trans-neuronal tracing with pseudorabies virus demonstrated disynaptic input to the MLR from the substantia nigra via the MEA. These findings offer a new perspective on the neuroanatomic basis of the MLR, and suggest that MLR dysfunction may contribute to the postural and gait abnormalities in Parkinsonism.

18.
Neurodegener Dis ; 14(2): 53-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24158021

RESUMO

BACKGROUND: N-terminally truncated, pyroglutamate-modified amyloid-ß (Aß) peptides are major constituents of amyloid deposits in Alzheimer's disease (AD). METHODS: Using a newly developed ELISA for Aß modified at glutamate 3 with a pyroglutamate (pE3Aß), brain pE3Aß was characterized in human AD in an AD mouse model harboring double knock-in amyloid precursor protein (APP)-KM670/671NL and presenilin 1 (PS1)-P264L (APP/PS1-dKI) mutations, and in a second mouse model with transgenic overexpression of human APP695 with APP-KM670/671NL (Tg2576). RESULTS: pE3Aß increased in the AD brain versus age-matched controls, with pE3Aß/total Aß at 45 and 10%, respectively. Compared to controls, the AD brain demonstrated 8.5-fold increased pE3Aß compared to non-pE3Aß species, which increased 2.7-fold. In the APP/PS1-dKI brain, pE3Aß/total Aß increased from 7% at 3 months to 16 and 19% at 15 and 19 months, respectively. In Tg2576, pE3Aß/total Aß was only 1.5% at 19 months, suggesting that APP/PS1-dKI, despite less total Aß compared to Tg2576 at comparable ages, more closely mimics AD brain pathology. CONCLUSION: This report supports a significant role for pE3Aß in AD pathogenesis by confirming that pE3Aß represents a large fraction of Aß within the AD brain. Compared to the age-matched control brain, pE3Aß increased to a greater extent compared to Aß species without this N-terminal modification. Further, the APP/PS1-dKI model more closely resembles the AD brain in this regard, compared to the Tg2576 model.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/imunologia , Precursor de Proteína beta-Amiloide/genética , Animais , Anticorpos , Ensaio de Imunoadsorção Enzimática , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Ácido Pirrolidonocarboxílico/química
19.
J Biol Chem ; 288(7): 4844-53, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23288850

RESUMO

Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the "mating plug" by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (~30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca(2+)-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10(-2) units mg(-1). AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8-10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae.


Assuntos
Anopheles/enzimologia , Transglutaminases/química , Sequência de Aminoácidos , Animais , Cálcio/química , Reagentes de Ligações Cruzadas/química , Citoplasma/metabolismo , Dimerização , Feminino , Masculino , Espectrometria de Massas/métodos , Modelos Químicos , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Transglutaminases/metabolismo
20.
Lancet ; 380(9859): 2071-94, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245603

RESUMO

BACKGROUND: Estimation of the number and rate of deaths by age and sex is a key first stage for calculation of the burden of disease in order to constrain estimates of cause-specific mortality and to measure premature mortality in populations. We aimed to estimate life tables and annual numbers of deaths for 187 countries from 1970 to 2010. METHODS: We estimated trends in under-5 mortality rate (children aged 0-4 years) and probability of adult death (15-59 years) for each country with all available data. Death registration data were available for more than 100 countries and we corrected for undercount with improved death distribution methods. We applied refined methods to survey data on sibling survival that correct for survivor, zero-sibling, and recall bias. We separately estimated mortality from natural disasters and wars. We generated final estimates of under-5 mortality and adult mortality from the data with Gaussian process regression. We used these results as input parameters in a relational model life table system. We developed a model to extrapolate mortality to 110 years of age. All death rates and numbers have been estimated with 95% uncertainty intervals (95% UIs). FINDINGS: From 1970 to 2010, global male life expectancy at birth increased from 56·4 years (95% UI 55·5-57·2) to 67·5 years (66·9-68·1) and global female life expectancy at birth increased from 61·2 years (60·2-62·0) to 73·3 years (72·8-73·8). Life expectancy at birth rose by 3-4 years every decade from 1970, apart from during the 1990s (increase in male life expectancy of 1·4 years and in female life expectancy of 1·6 years). Substantial reductions in mortality occurred in eastern and southern sub-Saharan Africa since 2004, coinciding with increased coverage of antiretroviral therapy and preventive measures against malaria. Sex-specific changes in life expectancy from 1970 to 2010 ranged from gains of 23-29 years in the Maldives and Bhutan to declines of 1-7 years in Belarus, Lesotho, Ukraine, and Zimbabwe. Globally, 52·8 million (95% UI 51·6-54·1 million) deaths occurred in 2010, which is about 13·5% more than occurred in 1990 (46·5 million [45·7-47·4 million]), and 21·9% more than occurred in 1970 (43·3 million [42·2-44·6 million]). Proportionally more deaths in 2010 occurred at age 70 years and older (42·8% in 2010 vs 33·1% in 1990), and 22·9% occurred at 80 years or older. Deaths in children younger than 5 years declined by almost 60% since 1970 (16·4 million [16·1-16·7 million] in 1970 vs 6·8 million [6·6-7·1 million] in 2010), especially at ages 1-59 months (10·8 million [10·4-11·1 million] in 1970 vs 4·0 million [3·8-4·2 million] in 2010). In all regions, including those most affected by HIV/AIDS, we noted increases in mean ages at death. INTERPRETATION: Despite global and regional health crises, global life expectancy has increased continuously and substantially in the past 40 years. Yet substantial heterogeneity exists across age groups, among countries, and over different decades. 179 of 187 countries have had increases in life expectancy after the slowdown in progress in the 1990s. Efforts should be directed to reduce mortality in low-income and middle-income countries. Potential underestimation of achievement of the Millennium Development Goal 4 might result from limitations of demographic data on child mortality for the most recent time period. Improvement of civil registration system worldwide is crucial for better tracking of global mortality. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Saúde Global , Expectativa de Vida/tendências , Mortalidade/tendências , Adolescente , Adulto , Mortalidade da Criança/tendências , Pré-Escolar , Feminino , Humanos , Lactente , Mortalidade Infantil/tendências , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA