Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248176

RESUMO

SARS-CoV-2 enters host cells by binding angiotensin-converting enzyme 2 (ACE2). Through a genome-wide association study, we show that a rare variant (MAF = 0.3%, odds ratio 0.60, P=4.5x10-13) that down-regulates ACE2 expression reduces risk of COVID-19 disease, providing human genetics support for the hypothesis that ACE2 levels influence COVID-19 risk. Further, we show that common genetic variants define a risk score that predicts severe disease among COVID-19 cases.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20220087

RESUMO

Projections of the stage of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic and local, regional and national public health policies designed to limit the spread of the epidemic as well as "reopen" cities and states, are best informed by serum neutralizing antibody titers measured by reproducible, high throughput, and statically credible antibody (Ab) assays. To date, a myriad of Ab tests, both available and authorized for emergency use by the FDA, has led to confusion rather than insight per se. The present study reports the results of a rapid, point-in-time 1,000-person cohort study using serial blood donors in the New York City metropolitan area (NYC) using multiple serological tests, including enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). These were then tested and associated with assays for neutralizing Ab (NAb). Of the 1,000 NYC blood donor samples in late June and early July 2020, 12.1% and 10.9% were seropositive using the Ortho Total Ig and the Abbott IgG HTSA assays, respectively. These serological assays correlated with neutralization activity specific to SARS-CoV-2. The data reported herein suggest that seroconversion in this population occurred in approximately 1 in 8 blood donors from the beginning of the pandemic in NYC (considered March 1, 2020). These findings deviate with an earlier seroprevalence study in NYC showing 13.7% positivity. Collectively however, these data demonstrate that a low number of individuals have serologic evidence of infection during this "first wave" and suggest that the notion of "herd immunity" at rates of [~]60% or higher are not near. Furthermore, the data presented herein show that the nature of the Ab-based immunity is not invariably associated with the development of NAb. While the blood donor population may not mimic precisely the NYC population as a whole, rapid assessment of seroprevalence in this cohort and serial reassessment could aid public health decision making.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20221804

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease-19 (COVID-19), a respiratory illness that can result in hospitalization or death. We investigated associations between rare genetic variants and seven COVID-19 outcomes in 543,213 individuals, including 8,248 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome-wide or when specifically focusing on (i) 14 interferon pathway genes in which rare deleterious variants have been reported in severe COVID-19 patients; (ii) 167 genes located in COVID-19 GWAS risk loci; or (iii) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, with results publicly browsable at https://rgc-covid19.regeneron.com.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...