Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731529

RESUMO

This work presents a comprehensive analysis of the adsorption of selected aromatic organic compounds on activated carbons. Both the equilibrium and kinetics of adsorption were studied using UV-Vis spectrophotometry. The influence of a number of factors: pH, contact time, presence of an accompanying substance, adsorbate concentration, as well as the mass and size of adsorbent grains, on the adsorption process from aqueous solutions was investigated. Phenol, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and methylene blue (as an accompanying substance) were selected as adsorbates. GAC 1240W and RIAA activated carbons were used as adsorbents. The equilibrium data were analyzed using the generalized Langmuir isotherm equation (R2 = 0.912-0.996). Adsorption rate data were fitted using a multi-exponential kinetic equation (1 - R2 = (1.0 × 10-6)-(8.2 × 10-4)). As an additional parameter, the half-time was also used to present the influence of selected factors on the adsorption kinetics. An increase in the amount of adsorption was demonstrated with increasing contact time as well as with decreasing solution pH and adsorbent grain size. For selected systems, an increase in the adsorption rate was observed with increasing adsorbate concentration, adsorbent mass and at lower pH values. In some cases, the presence of an accompanying substance also resulted in an increase in adsorption kinetics. In the tested experimental systems, optimal conditions for adsorption were established (T = 298 K, pH = 2, contact time: 7 days, grain diameter: >0.5 mm and the ratio of the mass of the adsorbent to the volume of the adsorbate solution: 1 g/L). Additionally, the acid-base properties (potentiometric titration), morphology (SEM) and structure (TEM) of the used adsorbents were also examined.

2.
Chemphyschem ; 25(8): e202300825, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38296806

RESUMO

The influence of carbon pore structure on the sorption process of selected cationic dyes has been investigated. The structure and surface of carbonaceous materials have been characterized basing on various techniques: scanning electron microscopy, low temperature nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy and thermal analysis combined with identification of gaseous products. The kinetic and equilibrium adsorption measurements of Basic Violet 3, Basic Red 1 and Basic Blue 9 from aqueous media were performed. The studied carbons seem to be promising adsorbents towards dyes, taking into account the easy-to-use uniform spherical form of the granules and a complex type of porosity with micro-, meso- and macropores appropriate for large molecule adsorption.

3.
J Phys Chem C Nanomater Interfaces ; 124(28): 15312-15323, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32952774

RESUMO

Chitosan was deposited on fumed silica without the addition of cross-linkers or activating agents. The chitosan surface layer has a high affinity toward organic molecules, e.g., Acid Orange 8 (AO8) dye, robust to a broad range of simulated conditions (variance with respect to temperature, time, and concentration of solute). Experimental equilibrium data were analyzed by the generalized Langmuir equation taking into consideration the energetic heterogeneity of the adsorption system. The effect of temperature on dye uptake and adsorption rate was studied. According to the calculated thermodynamic functions ΔG°, ΔH°, and ΔS° from the equilibrium data at different temperatures, the adsorption of AO8 onto chitosan-fumed silica composite is exothermic and spontaneous. The studies of temperature effect on adsorption equilibrium show that the maximum adsorption capacity (determined from the Langmuir-Freundlich equation) of synthesized composite toward AO8 is about one-third higher in the case of an isotherm measured at 5 °C than this value obtained for the isotherm measured at 45 °C. The quantitative binding of dye molecules to chitosan coating on the surface of silica was proved by 1H MAS NMR. The deep kinetics study through the application of various theoretical models-the first-order equation, pseudo-first-order equation, second-order equation, pseudo-second-order equation, mixed first, second-order equation, and multiexponential equation-was applied for getting inside the mechanism of AO8 binding to the chitosan coating. Structural characteristics of chitosan-coated silica were obtained from the low-temperature adsorption/desorption isotherms of nitrogen and imaging by scanning electron microscopy. The effects of a synthetic route for polymer coating on thermal stability and the ability to degrade were studied by differential scanning calorimetry.

4.
Langmuir ; 34(6): 2258-2273, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29345945

RESUMO

In this study, the influence of the chitosan immobilization method on the properties of final hybrid materials was performed. Chitosan was immobilized on the surface of mesoporous (ChS2) and fumed silica (ChS3) by physical adsorption and the sol-gel method (ChS1). It was found that physical immobilization of chitosan allows to obtain hybrid composites (ChS) with a homogeneous distribution of polymer on the surface, relatively wide pores, and specific surface area of about 170 m2/g, pHPZC = 5.7 for ChS3 and 356 m2/g and pHPZC = 6.0 for ChS2. The microporous chitosan-silica material with a specific surface area of 600 m2/g and a more negatively charged surface (pHPZC = 4.2) was obtained by the sol-gel reaction. The mechanisms of azo dye adsorption were studied, and the correlation with the composite structure was distinguished. The generalized Langmuir equation and its special cases, that is, Langmuir-Freundlich and Langmuir equations, were applied for the analysis of adsorption isotherm data. The adsorption study showed that physically adsorbed chitosan (ChS1 and ChS2) on a silica surface has a higher sorption capacity, for example, 0.48 mmol/g for the acid red 88 (AR88) dye (ChS2) and 0.23 mmol/g for the acid orange 8 (AO8) dye (ChS1), compared to the composite obtained by the sol-gel method [ChS1, 0.05 mmol/g for the AO8 dye]. For a deeper understanding of the behavior of immobilized chitosan in the adsorption processes, various kinetic equations were applied: first-order, second-order, mixed 1,2-order (MOE), multiexponential, and fractal-like MOE as well as intraparticle and pore diffusion model equations. In the case of AO8 dye, the adsorption rates were differentiated for three composites: for ChS3, 50% of the dye was removed from the solution after merely 5 min and almost 90% after 80 min. The slowest adsorption process controlled by the diffusion rate of dye molecules into the internal space of the pore structure was found for ChS1 (225 min halftime). In the case of ChS2, the rates for various dyes change in the following order: acid orange (AO7) > orange G (OG) > acid red 1 (AR1) > AR88 > AO8 (halftimes: 10.5 < 15.7 < 23.7 < 34.9 < 42.9 min).


Assuntos
Compostos Azo/química , Quitosana/química , Nanocompostos/química , Dióxido de Silício/química , Benzenossulfonatos/química
5.
J Colloid Interface Sci ; 361(2): 603-11, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21705011

RESUMO

The influence of lateral non-specific and specific interactions on the kinetics in dilute solutions is analyzed within the framework of the Langmuir model. Regular solution theory is used to derive kinetic equations for dilute solutions (RSK model). RSK equations are modified to include simple Kiselev associative interactions and deviations from the regular solution theory (mRSK model) and LF-type energetic heterogeneity (LF-mRSK). Derived models lead to significantly different kinetic behavior than the commonly used FG model or the SRT approach. The influence of the equilibrium uptake u(eq) and coverage θ(eq) on the observed effects of lateral interactions is discussed. A new kind of kinetic plot for data analysis is also presented. The mixed LF-mRSK model is applied to analysis of solute adsorption on mesoporous carbon.

6.
Langmuir ; 26(19): 15229-38, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20806937

RESUMO

In the article, a new integrated kinetic Langmuir equation (IKL) is derived. The IKL equation is a simple and easy to analyze but complete analytical solution of the kinetic Langmuir model. The IKL is compared with the nth-order, mixed 1,2-order, and multiexponential kinetic equations. The impact of both equilibrium coverage θ(eq) and relative equilibrium uptake u(eq) on kinetics is explained. A newly introduced Langmuir batch equilibrium factor f(eq) that is the product of both parameters θ(eq)u(eq) is used to determine the general kinetic behavior. The analysis of the IKL equation allows us to understand fully the Langmuir kinetics and explains its relation with respect to the empirical pseudo-first-order (PFO, i.e., Lagergren), pseudo-second-order (PSO), and mixed 1,2-order kinetic equations, and it shows the conditions of their possible application based on the Langmuir model. The dependence of the initial adsorption rate on the system properties is analyzed and compared to the earlier published approximate equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...