Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766157

RESUMO

Motor systems operate over a range of frequencies and relative timing (phase). We studied the contribution of the hyperpolarization-activated inward current (I h ) to frequency and phase in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis as temperature was altered from 11°C to 21°C. Under control conditions, the frequency of the rhythm increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. When we blocked I h with cesium (Cs + ) PD offset, LP onset, and LP offset were all phase advanced in Cs + at 11°C, and the latter two further advanced as temperature increased. In Cs + the steady state increase in pyloric frequency with temperature diminished and the Q 10 of the pyloric frequency dropped from ∼1.75 to ∼1.35. Unexpectedly in Cs + , the frequency displayed non-monotonic dynamics during temperature transitions; the frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic "jag". Interestingly, these jags were still present during temperature transitions in Cs + when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that I h plays an important role in the ability of this circuit to produce smooth transitory responses and persistent frequency increases by different mechanisms during temperature fluctuations.

2.
J Neurophysiol ; 131(3): 509-515, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264774

RESUMO

Nervous systems have evolved to function consistently in the face of the normal environmental fluctuations experienced by animals. The stomatogastric nervous system (STNS) of the crab, Cancer borealis, produces a motor output that has been studied for its remarkable robustness in response to single global perturbations. Changes in environments, however, are often complex and multifactorial. Therefore, we studied the robustness of the pyloric network in the stomatogastric ganglion (STG) in response to simultaneous perturbations of temperature and pH. We compared the effects of elevated temperatures on the pyloric rhythm at control, acid, or base pHs. In each pH recordings were made at 11°C, and then the temperature was increased until the rhythms became disorganized ("crashed"). Pyloric burst frequencies and phase relationships showed minor differences between pH groups until reaching close to the crash temperatures. However, the temperatures at which the rhythms were disrupted were lower in the two extreme pH conditions. This indicates that one environmental stress can make an animal less resilient to a second stressor.NEW & NOTEWORTHY Resilience to environmental fluctuations is important for all animals. It is common that animals encounter multiple stressful events at the same time, the cumulative impacts of which are largely unknown. This study examines the effects of temperature and pH on the nervous system of crabs that live in the fluctuating environments of the Northern Atlantic Ocean. The ranges of tolerance to one perturbation, temperature, are reduced under the influence of a second, pH.


Assuntos
Braquiúros , Piloro , Animais , Temperatura , Piloro/fisiologia , Gânglios dos Invertebrados/fisiologia , Braquiúros/fisiologia
4.
Nat Rev Neurosci ; 24(10): 640-652, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620600

RESUMO

Neuronal membrane excitability must be resilient to perturbations that can take place over timescales from milliseconds to months (or even years in long-lived animals). A great deal of attention has been paid to classes of homeostatic mechanisms that contribute to long-term maintenance of neuronal excitability through processes that alter a key structural parameter: the number of ion channel proteins present at the neuronal membrane. However, less attention has been paid to the self-regulating 'automatic' mechanisms that contribute to neuronal resilience by virtue of the kinetic properties of ion channels themselves. Here, we propose that these two sets of mechanisms are complementary instantiations of feedback control, together enabling resilience on a wide range of temporal scales. We further point to several methodological and conceptual challenges entailed in studying these processes - both of which involve enmeshed feedback control loops - and consider the consequences of these mechanisms of resilience.


Assuntos
Canais Iônicos , Neurônios , Animais , Neurônios/fisiologia , Canais Iônicos/fisiologia , Membrana Celular/fisiologia
5.
Proc Natl Acad Sci U S A ; 120(26): e2222016120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339223

RESUMO

Neurons and neuronal circuits must maintain their function throughout the life of the organism despite changing environments. Previous theoretical and experimental work suggests that neurons monitor their activity using intracellular calcium concentrations to regulate their intrinsic excitability. Models with multiple sensors can distinguish among different patterns of activity, but previous work using models with multiple sensors produced instabilities that lead the models' conductances to oscillate and then to grow without bound and diverge. We now introduce a nonlinear degradation term that explicitly prevents the maximal conductances to grow beyond a bound. We combine the sensors' signals into a master feedback signal that can be used to modulate the timescale of conductance evolution. Effectively, this means that the negative feedback can be gated on and off according to how far the neuron is from its target. The modified model recovers from multiple perturbations. Interestingly, depolarizing the models to the same membrane potential with current injection or with simulated high extracellular K+ produces different changes in conductances, arguing that caution must be used in interpreting manipulations that serve as a proxy for increased neuronal activity. Finally, these models accrue traces of prior perturbations that are not visible in their control activity after perturbation but that shape their responses to subsequent perturbations. These cryptic or hidden changes may provide insight into disorders such as posttraumatic stress disorder that only become visible in response to specific perturbations.


Assuntos
Neurônios , Neurônios/metabolismo , Potenciais da Membrana/fisiologia , Homeostase/fisiologia , Potenciais de Ação/fisiologia
6.
Curr Biol ; 33(9): 1818-1824.e3, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023754

RESUMO

The Na+ channels that are important for action potentials show rapid inactivation, a state in which they do not conduct, although the membrane potential remains depolarized.1,2 Rapid inactivation is a determinant of millisecond-scale phenomena, such as spike shape and refractory period. Na+ channels also inactivate orders of magnitude more slowly, and this slow inactivation has impacts on excitability over much longer timescales than those of a single spike or a single inter-spike interval.3,4,5,6,7,8,9,10 Here, we focus on the contribution of slow inactivation to the resilience of axonal excitability11,12 when ion channels are unevenly distributed along the axon. We study models in which the voltage-gated Na+ and K+ channels are unevenly distributed along axons with different variances, capturing the heterogeneity that biological axons display.13,14 In the absence of slow inactivation, many conductance distributions result in spontaneous tonic activity. Faithful axonal propagation is achieved with the introduction of Na+ channel slow inactivation. This "normalization" effect depends on relations between the kinetics of slow inactivation and the firing frequency. Consequently, neurons with characteristically different firing frequencies will need to implement different sets of channel properties to achieve resilience. The results of this study demonstrate the importance of the intrinsic biophysical properties of ion channels in normalizing axonal function.


Assuntos
Axônios , Neurônios , Axônios/fisiologia , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Canais de Sódio
7.
Proc Natl Acad Sci U S A ; 120(8): e2219049120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787352

RESUMO

Biological neurons show significant cell-to-cell variability but have the striking ability to maintain their key firing properties in the face of unpredictable perturbations and stochastic noise. Using a population of multi-compartment models consisting of soma, neurites, and axon for the lateral pyloric neuron in the crab stomatogastric ganglion, we explore how rebound bursting is preserved when the 14 channel conductances in each model are all randomly varied. The coupling between the axon and other compartments is critical for the ability of the axon to spike during bursts and consequently determines the set of successful solutions. When the coupling deviates from a biologically realistic range, the neuronal tolerance of conductance variations is lessened. Thus, the gross morphological features of these neurons enhance their robustness to perturbations of channel densities and expand the space of individual variability that can maintain a desired output pattern.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Axônios , Piloro , Potenciais de Ação/fisiologia
8.
Elife ; 112022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36129256

RESUMO

What is the best way to ensure that scientific criticism is heard and understood?


Assuntos
Ciência , Audição
9.
iScience ; 25(9): 104919, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060056

RESUMO

We examined the effects of altered extracellular potassium concentration on the output of the well-studied pyloric circuit in the crab, Cancer borealis. Pyloric neurons initially become quiescent, then recover spiking and bursting activity in high potassium saline (2.5x[K+]). These changes in circuit robustness are maintained after the perturbation is removed; pyloric neurons are more robust to subsequent potassium perturbations even after several hours of wash in control saline. Despite this long-term "memory" of the stimulus history, we found no differences in neuronal activity in control saline. The circuit's adaptation is erased by both low potassium saline (0.4x[K+]) and direct hyperpolarizing current. Initial sensitivity of PD neurons to high potassium saline also varies seasonally, indicating that changes in robustness may reflect natural changes in circuit states. Thus, perturbation, followed by recovery of normal activity, can hide cryptic changes in neuronal properties that are only revealed by subsequent challenges.

10.
Curr Opin Neurobiol ; 76: 102610, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986971

RESUMO

Small rhythmic circuits, such as those found in invertebrates, have provided fundamental insights into how circuit dynamics depend on individual neuronal and synaptic properties. Degenerate circuits are those with different network parameters and similar behavior. New work on degenerate circuits and their modulation illustrates some of the rules that help maintain stable and robust circuit function despite environmental perturbations. Advances in neuropeptide isolation and identification provide enhanced understanding of the neuromodulation of circuits for behavior. The advent of molecular studies of mRNA expression provides new insight into animal-to-animal variability and the homeostatic regulation of excitability in neurons and networks.


Assuntos
Rede Nervosa , Neurônios , Animais , Homeostase/fisiologia , Invertebrados , Rede Nervosa/fisiologia , Neurônios/fisiologia , RNA Mensageiro
12.
J Comp Neurol ; 530(17): 2954-2965, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882035

RESUMO

The crustacean cardiac ganglion (CG) comprises nine neurons that provide rhythmic drive to the heart. The CG is the direct target of multiple modulators. Synapsin-like immunoreactivity was found clustered around the somata of the large cells (LC) and in a neuropil at the anterior branch of the CG trunk of Cancer borealis. This implicates the soma as a key site of synaptic integration, an unusual configuration in invertebrates. Proctolin is an excitatory neuromodulator of the CG, and proctolin-like immunoreactivity exhibited partial overlap with putative chemical synapses near the LCs and at the neuropil. A proctolin-like projection was also found in a pair of excitatory nerves entering the CG. GABA-like immunoreactivity was nearly completely colocalized with chemical synapses near the LCs but absent at the anterior branch neuropil. GABA-like projections were found in a pair of inhibitory nerves entering the CG. C. borealis Allatostatin B1 (CbASTB), red pigment concentrating hormone, and FLRFamide-like immunoreactivity each had a unique pattern of staining and co-localization with putative chemical synapses. These results provide morphological evidence that synaptic input is integrated at LC somata in the CG. Our findings provide a topographical organization for some of the multiple inhibitory and excitatory modulators that alter the rhythmic output of this semi-autonomous motor circuit.


Assuntos
Braquiúros , Neoplasias , Animais , Braquiúros/anatomia & histologia , Gânglios dos Invertebrados/fisiologia , Neurotransmissores , Sinapses , Sinapsinas , Ácido gama-Aminobutírico
13.
Elife ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762980

RESUMO

Changes in science over the past 50 years have reduced the chances of trainees experiencing the joy of discovery.

15.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302489

RESUMO

Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Animais , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Piloro/fisiologia
16.
Curr Biol ; 32(4): R144-R145, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35231402

RESUMO

Eve Marder and Shimon Marom argue that, while we celebrate the remarkable new technologies and their ability to generate new knowledge, we mourn a concurrent loss of knowledge and expertise.


Assuntos
Conhecimento
17.
Elife ; 112022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103594

RESUMO

Reciprocal inhibition is a building block in many sensory and motor circuits. We studied the features that underly robustness in reciprocally inhibitory two neuron circuits. We used the dynamic clamp to create reciprocally inhibitory circuits from pharmacologically isolated neurons of the crab stomatogastric ganglion by injecting artificial graded synaptic (ISyn) and hyperpolarization-activated inward (IH) currents. There is a continuum of mechanisms in circuits that generate antiphase oscillations, with 'release' and 'escape' mechanisms at the extremes, and mixed mode oscillations between these extremes. In release, the active neuron primarily controls the off/on transitions. In escape, the inhibited neuron controls the transitions. We characterized the robustness of escape and release circuits to alterations in circuit parameters, temperature, and neuromodulation. We found that escape circuits rely on tight correlations between synaptic and H conductances to generate bursting but are resilient to temperature increase. Release circuits are robust to variations in synaptic and H conductances but fragile to temperature increase. The modulatory current (IMI) restores oscillations in release circuits but has little effect in escape circuits. Perturbations can alter the balance of escape and release mechanisms and can create mixed mode oscillations. We conclude that the same perturbation can have dramatically different effects depending on the circuits' mechanism of operation that may not be observable from basal circuit activity.


Assuntos
Braquiúros , Neurônios , Animais , Braquiúros/fisiologia , Gânglios , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia
18.
Curr Biol ; 32(6): 1439-1445.e3, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148862

RESUMO

In many animals, the daily cycling of light is a key environmental cue, encoded in part by specialized light-sensitive neurons without visual functions. We serendipitously discovered innate light-responsiveness while imaging the extensively studied stomatogastric ganglion (STG) of the crab, Cancer borealis. The STG houses a motor circuit that controls the rhythmic contractions of the foregut, and the system has facilitated deep understanding of circuit function and neuromodulation. We illuminated the crab STG in vitro with different wavelengths and amplitudes of light and found a dose-dependent increase in neuronal activity upon exposure to blue light (λ460-500 nm). The response was elevated in the absence of neuromodulatory inputs to the STG. The pacemaker kernel that drives the network rhythm was responsive to light when synaptically isolated, and light shifted the threshold for slow wave and spike activity in the hyperpolarized direction, accounting for the increased activity patterns. Cryptochromes are evolutionarily conserved blue-light photoreceptors that are involved in circadian behaviors.1 Their activation by light can lead to enhanced neuronal activity.2 We identified cryptochrome sequences in the C. borealis transcriptome as potential mediators of this response and confirmed their expression in pyloric dilator (PD) neurons, which are part of the pacemaker kernel, by single-cell RNA-seq analysis.


Assuntos
Braquiúros , Neoplasias , Animais , Braquiúros/fisiologia , Gânglios , Gânglios dos Invertebrados/metabolismo , Neoplasias/metabolismo , Neurônios/fisiologia , Periodicidade
19.
Elife ; 112022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35040780

RESUMO

A researcher should only be an author on a paper if they have contributed to it in a substantive way.


Assuntos
Autoria/normas , Editoração/normas , Humanos , Editoração/estatística & dados numéricos , Editoração/tendências , Pesquisadores
20.
J Neurosci ; 41(50): 10213-10221, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753741

RESUMO

Years of basic neuroscience on the modulation of the small circuits found in the crustacean stomatogastric ganglion have led us to study the effects of temperature on the motor patterns produced by the stomatogastric ganglion. While the impetus for this work was the study of individual variability in the parameters determining intrinsic and synaptic conductances, we are confronting substantial fluctuations in the stability of the networks to extreme temperature; these may correlate with changes in ocean temperature. Interestingly, when studied under control conditions, these wild-caught animals appear to be unchanged, but it is only when challenged by extreme temperatures that we reveal the consequences of warming oceans.


Assuntos
Mudança Climática , Modelos Neurológicos , Neurociências , Animais , Braquiúros , Nephropidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...