Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(25): 16921-9, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27282392

RESUMO

Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

2.
Microscopy (Oxf) ; 62 Suppl 1: S65-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536701

RESUMO

The development of aberration-corrected electron microscopes (ACEMs) has made it possible to resolve individual atomic columns ('dumbbells') with correct interatomic spacings in elemental and compound semiconductors. Thus, the latest generations of ACEMs should become powerful instruments for determining detailed structural arrangements at defects and interfaces in these materials. This paper provides a short overview of off-line ('software') and on-line ('hardware') ACEM techniques, with particular reference to characterization of elemental and compound semiconductors. Exploratory probe-corrected studies of ZnTe/InP and ZnTe/GaAs epitaxial heterostructures and interfacial defects are also described. Finally, some of the associated problems and future prospects are briefly discussed.

3.
Microsc Microanal ; 8(5): 412-21, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12533217

RESUMO

We have performed high resolution transmission electron microscope (HRTEM) image simulations to qualitatively assess the visibility of various structural defects in ultrathin gate oxides of MOSFET devices, and to quantitatively examine the accuracy of HRTEM in performing gate oxide metrology. Structural models contained crystalline defects embedded in an amorphous 16-A-thick gate oxide. Simulated images were calculated for structures viewed in cross section. Defect visibility was assessed as a function of specimen thickness and defect morphology, composition, size, and orientation. Defect morphologies included asperities lying on the substrate surface, as well as "bridging" defects connecting the substrate to the gate electrode. Measurements of gate oxide thickness extracted from simulated images were compared to actual dimensions in the model structure to assess TEM accuracy for metrology. The effects of specimen tilt, specimen thickness, objective lens defocus, and coefficient of spherical aberration (Cs) on measurement accuracy were explored for nominal 10-A gate oxide thickness. Results from this work suggest that accurate metrology of ultrathin gate oxides (i.e., limited to several percent error) is feasible on a consistent basis only by using a Cs-corrected microscope. However, fundamental limitations remain for characterizing defects in gate oxides using HRTEM, even with the new generation of Cs-corrected microscopes.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Semicondutores , Cristalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...