Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1354327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585221

RESUMO

Consumption of obesogenic (OB) diets increases the prevalence of maternal obesity worldwide, causing major psychological and social burdens in women. Obesity not only impacts the mother's health and fertility but also elevates the risk of obesity and metabolic disorders in the offspring. Family lifestyle is mostly persistent through generations, possibly contributing to the growing prevalence of obesity. We hypothesized that offspring metabolic health is dependent on both maternal and offspring diet and their interaction. We also hypothesized that the sensitivity of the offspring to the diet may be influenced by the match or mismatch between offspring and maternal diets. To test these hypotheses, outbred Swiss mice were fed a control (C, 10% fat, 7% sugar, and n = 14) or OB diet (60% fat, 20% sugar, and n = 15) for 7 weeks and then mated with the same control males. Mice were maintained on the same corresponding diet during pregnancy and lactation, and the offspring were kept with their mothers until weaning. The study focused only on female offspring, which were equally distributed at weaning and fed C or OB diets for 7 weeks, resulting in four treatment groups: C-born offspring fed C or OB diets (C ¼ C and C ¼ OB) and OB-born offspring fed C or OB diets (OB ¼ C and OB ¼ OB). Adult offspring's systemic blood profile (lipid and glucose metabolism) and muscle mitochondrial features were assessed. We confirmed that the offspring's OB diet majorly impacted the offspring's health by impairing the offspring's serum glucose and lipid profiles, which are associated with abnormal muscle mitochondrial ultrastructure. Contrarily, maternal OB diet was associated with increased expression of mitochondrial complex markers and mitochondrial morphology in offspring muscle, but no additive effects of (increased sensitivity to) an offspring OB diet were observed in pups born to obese mothers. In contrast, their metabolic profile appeared to be healthier compared to those born to lean mothers and fed an OB diet. These results are in line with the thrifty phenotype hypothesis, suggesting that OB-born offspring are better adapted to an environment with high energy availability later in life. Thus, using a murine outbred model, we could not confirm that maternal obesogenic diets contribute to female familial obesity in the following generations.

2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396912

RESUMO

Obese individuals often suffer from metabolic health disorders and reduced oocyte quality. Preconception diet interventions in obese outbred mice restore metabolic health and oocyte quality and mitochondrial ultrastructure. Also, studies in inbred mice have shown that maternal obesity induces metabolic alterations and reduces oocyte quality in offspring (F1). Until now, the effect of maternal high-fat diet on F1 metabolic health and oocyte quality and the potential beneficial effects of preconception dietary interventions have not been studied together in outbred mice. Therefore, we fed female mice a high-fat/high-sugar (HF/HS) diet for 7 weeks and switched them to a control (CONT) or caloric-restriction (CR) diet or maintained them on the HF/HS diet for 4 weeks before mating, resulting in three treatment groups: diet normalization (DN), CR, and HF/HS. In the fourth group, mice were fed CONT diet for 11 weeks (CONT). HF/HS mice were fed an HF/HS diet from conception until weaning, while all other groups were then fed a CONT diet. After weaning, offspring were kept on chow diet and sacrificed at 11 weeks. We observed significantly elevated serum insulin concentrations in female HF/HS offspring and a slightly increased percentage of mitochondrial ultrastructural abnormalities, mitochondrial size, and mitochondrial mean gray intensity in HF/HS F1 oocytes. Also, global DNA methylation was increased and cellular stress-related proteins were downregulated in HF/HS F1 oocytes. Mostly, these alterations were prevented in the DN group, while, in CR, this was only the case for a few parameters. In conclusion, this research has demonstrated for the first time that a maternal high-fat diet in outbred mice has a moderate impact on female F1 metabolic health and oocyte quality and that preconception DN is a better strategy to alleviate this compared to CR.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Camundongos , Animais , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade Materna/metabolismo , Mitocôndrias/metabolismo , Açúcares/metabolismo , Oócitos/metabolismo , Camundongos Endogâmicos C57BL , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
Reproduction ; 167(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038651

RESUMO

In brief: Epigenetic programming is a crucial process during early embryo development that can have a significant impact on the results of assisted reproductive technology (ART) and offspring health. Here we show evidence using a bovine in vitro experiment that embryo epigenetic programing is dependent on oocyte mitochondrial bioenergetic activity during maturation. Abstract: This study investigated if oocyte and early embryo epigenetic programming are dependent on oocyte mitochondrial ATP production. A bovine in vitro experiment was performed in which oocyte mitochondrial ATP production was reduced using 5 nmol/L oligomycin A (OM; ATP synthase inhibitor) during in vitro maturation (IVM) compared to control (CONT). OM exposure significantly reduced mitochondrial ATP production rate in MII oocytes (34.6% reduction, P = 0.018) and significantly decreased embryo cleavage rate at 48 h post insemination (7.6% reduction, P = 0.031). Compared to CONT, global DNA methylation (5mC) levels were decreased in OM-exposed MII oocytes (9.8% reduction, P = 0.019) while global histone methylation (H3K9me2) was increased (9.4% increase, P = 0.024). In zygotes, OM exposure during IVM increased 5mC (22.3% increase, P < 0.001) and histone acetylation (H3K9ac, 17.3% increase, P = 0.023) levels, while H3K9me2 levels were not affected. In morulae, 5mC levels were increased (10.3% increase, P = 0.041) after OM exposure compared to CONT, while there was no significant difference in H3K9ac and H3K9me2 levels. These epigenetic alterations were not associated with any persistent effects on embryo mitochondrial ATP production rate or mitochondrial membrane potential (assessed at the four-cell stage). Also, epigenetic regulatory genes were not differentially expressed in OM-exposed zygotes or morulae. Finally, apoptotic cell index in blastocysts was increased after OM exposure during oocyte maturation (41.1% increase, P < 0.001). We conclude that oocyte and early embryo epigenetic programming are dependent on mitochondrial ATP production during IVM.


Assuntos
Histonas , Técnicas de Maturação in Vitro de Oócitos , Animais , Bovinos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Epigenoma , Oligomicinas/farmacologia , Oócitos , Desenvolvimento Embrionário , Trifosfato de Adenosina
4.
J Assist Reprod Genet ; 41(2): 371-383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146030

RESUMO

PURPOSE: Oxidative stress and mitochondrial dysfunction play central roles in reduced oocyte quality and infertility in obese patients. Mitochondria-targeted treatments containing co-enzyme Q10 such as mitoquinone (MitoQ) can increase mitochondrial antioxidative capacity; however, their safety and efficiency when supplemented to oocytes under lipotoxic conditions have not been described. METHODS: We tested the effect of different concentrations of MitoQ or its cationic carrier (TPP) (0, 0.1, 0.5, 1.0 µM each) during bovine oocyte IVM. Then, we tested the protective capacity of MitoQ (0.1 µM) against palmitic acid (PA)-induced lipotoxicity and mitochondrial dysfunction in oocytes. RESULTS: Exposure to MitoQ, or TPP only, at 1 µM significantly (P<0.05) reduced oocyte mitochondrial inner membrane potential (JC-1 staining) and resulted in reduced cleavage and blastocyst rates compared with solvent control. Lower concentrations of MitoQ or TPP had no effects on embryo development under control (PA-free) conditions. As expected, PA increased the levels of MMP and ROS in oocytes (CellROX staining) and reduced cleavage and blastocyst rates compared with the controls (P<0.05). These negative effects were ameliorated by 0.1 µM MitoQ. In contrast, 0.1 µM TPP alone had no protective effects. MitoQ also normalized the expression of HSP10 and TFAM, and partially normalized HSP60 in the produced blastocysts, indicating at least a partial alleviation of PA-induced mitochondrial stress. CONCLUSION: Oocyte exposure to MitoQ may disturb mitochondrial bioenergetic functions and developmental capacity due to a TPP-induced cationic overload. A fine-tuned concentration of MitoQ can protect against lipotoxicity-induced mitochondrial stress during IVM and restore developmental competence and embryo quality.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Doenças Mitocondriais , Compostos Organofosforados , Ubiquinona/análogos & derivados , Humanos , Animais , Bovinos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos , Blastocisto/metabolismo , Desenvolvimento Embrionário , Mitocôndrias/metabolismo
5.
Sci Rep ; 13(1): 21664, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066095

RESUMO

Maternal metabolic disorders may cause lipotoxic effects on the developing oocyte. Understanding the timing at which this might disrupt embryo epigenetic programming and how this is linked with mitochondrial dysfunction is crucial for improving assisted reproductive treatments, but has not been investigated before. Therefore, we used a bovine in vitro model to investigate if pathophysiological palmitic acid (PA) concentrations during in vitro oocyte maturation and in vitro embryo culture alter embryo epigenetic patterns (DNA methylation (5mC) and histone acetylation/methylation (H3K9ac/H3K9me2)) compared to control (CONT) and solvent control (SCONT), at the zygote and morula stage. Secondly, we investigated if these epigenetic alterations are associated with mitochondrial dysfunction and changes in ATP production rate, or altered expression of epigenetic regulatory genes. Compared to SCONT, H3K9ac and H3K9me2 levels were increased in PA-derived zygotes. Also, 5mC and H3K9me2 levels were increased in PA-exposed morulae compared to SCONT. This was associated with complete inhibition of glycolytic ATP production in oocytes, increased mitochondrial membrane potential and complete inhibition of glycolytic ATP production in 4-cell embryos and reduced SOD2 expression in PA-exposed zygotes and morulae. For the first time, epigenetic alterations in metabolically compromised zygotes and morulae have been observed in parallel with mitochondrial dysfunction in the same study.


Assuntos
Doenças Mitocondriais , Oócitos , Animais , Bovinos , Oócitos/metabolismo , Mitocôndrias/metabolismo , Epigênese Genética , Doenças Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Blastocisto/metabolismo
6.
Front Physiol ; 14: 1288472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965107

RESUMO

Obesity affects oocyte mitochondrial functions and reduces oocyte quality and fertility. Obesity may also increase the risk of metabolic disorders in the offspring. Children are likely to follow their parents lifestyle and diet, which also contributes to the increased prevelance of obesity across generations. We hypothesise that the impact of obesogenic (OB) diet and obesity on oocyte mitochondrial functions is different in offspring born to obese mothers compared to those born to healthy mothers. To test this hypothesis, we fed a control (C, 10% fat, 7% sugar) or an OB diet (60% fat, 20% sugar) to female mice (for 7 weeks (w)) and then to their female offspring (for 7w after weaning) in a 2 × 2 factorial design (C ¼ C, n = 35, C ¼ OB, n = 35, OB ¼ C n = 49 and OB ¼ OB, n = 50). Unlike many other studies, we used an outbred Swiss mouse model to increase the human pathophysiological relevance. Offspring were sacrificed at 10w and their oocytes were collected. Offspring OB diet increased oocyte lipid droplet content, mitochondrial activity and reactive oxygen species (ROS) levels, altered mitochondrial ultrastructure and reduced oocyte pyruvate consumption. Mitochondrial DNA copy numbers and lactate production remained unaffected. Mitochondrial ultrastructure was the only factor where a significant interaction between maternal and offspring diet effect was detected. The maternal OB background resulted in a small but significant increase in offspring's oocyte mitochondrial ultrastructural abnormalities without altering mitochondrial inner membrane potential, active mitochondrial distribution, mitochondrial DNA copy numbers, or ROS production. This was associated with reduced mitochondrial complex III and V expression and reduced pyruvate consumption which may be compensatory mechanisms to control mitochondrial inner membrane potential and ROS levels. Therefore, in this Swiss outbred model, while offspring OB diet had the largest functional impact on oocyte mitochondrial features, the mitochondrial changes due to the maternal background appear to be adaptive and compensatory rather than dysfunctional.

7.
Biology (Basel) ; 12(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508445

RESUMO

We investigated whether a high-fat/high-sugar (HF/HS) diet alters the lipidomic profile of the oviductal epithelium (OE) and studied the patterns of these changes over time. Female outbred Swiss mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Mice (n = 3 per treatment per time point) were sacrificed and oviducts were collected at 3 days and 1, 4, 8, 12 and 16 weeks on the diet. Lipids in the OE were imaged using matrix-assisted laser desorption ionisation mass spectrometry imaging. Discriminative m/z values and differentially regulated lipids were determined in the HF/HS versus control OEs at each time point. Feeding the obesogenic diet resulted in acute changes in the lipid profile in the OE already after 3 days, and thus even before the development of an obese phenotype. The changes in the lipid profile of the OE progressively increased and became more persistent after long-term HF/HS diet feeding. Functional annotation revealed a differential abundance of phospholipids, sphingomyelins and lysophospholipids in particular. These alterations appear to be not only caused by the direct accumulation of the excess circulating dietary fat but also a reduction in the de novo synthesis of several lipid classes, due to oxidative stress and endoplasmic reticulum dysfunction. The described diet-induced lipidomic changes suggest alterations in the OE functions and the oviductal microenvironment which may impact crucial reproductive events that take place in the oviduct, such as fertilization and early embryo development.

8.
PLoS One ; 17(9): e0275379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174086

RESUMO

RESEARCH QUESTION: How long does it take for an obesogenic (high-fat/high-sugar, HF/HS) diet to influence the oviductal microenvironment? What are the affected cellular pathways and are they dependent on the genetic background of the mouse model? DESIGN: Female Swiss (outbred) and C57BL/6N (B6, inbred) mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Body weight was measured weekly. Mice were sacrificed at 3 days (3d), 1 week (1w), 4w, 8w, 12w and 16w on the diet (n = 5 per treatment per time point). Total cholesterol concentrations and inflammatory cytokines were measured in serum. Oviductal epithelial cells (OECs) were used to study the expression of genes involved in (mitochondrial) oxidative stress (OS), endoplasmic reticulum (ER) stress and inflammation using qPCR. RESULTS: Body weight and blood cholesterol increased significantly in the HF/HS mice in both strains compared to controls. In Swiss mice, HF/HS diet acutely increased ER-stress and OS-related genes in the OECs already after 3d. Subsequently, mitochondrial and cytoplasmic antioxidants were upregulated and ER-stress was alleviated at 1w. After 4-8w (mid-phase), the expression of ER-stress and OS-related genes was increased again and persisted throughout the late-phase (12-16w). Serum inflammatory cytokines and inflammatory marker-gene expression in the OECs were increased only in the late-phase. Some of the OEC stress responses were stronger or earlier in the B6. CONCLUSIONS: OECs are sensitive to an obesogenic diet and may exhibit acute stress responses already after a few days of feeding. This may impact the oviductal microenvironment and contribute to diet-induced subfertility.


Assuntos
Antioxidantes , Oviductos , Animais , Peso Corporal , Colesterol , Citocinas , Dieta , Feminino , Frutose , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL
9.
J Dairy Sci ; 105(8): 6956-6972, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35840405

RESUMO

In this study, we hypothesized that early postpartum (pp) metabolic and oxidative stress conditions in dairy cows (particularly those with severe negative energy balance, NEB) are associated with long-term changes in granulosa cell (GC) functions in the preovulatory follicle at the time of breeding. Blood samples were collected at wk 2 and wk 8 pp from 47 healthy multiparous cows. Follicular fluid (FF) and GC were collected from the preovulatory follicle after estrous synchronization at wk 8. Several metabolic and antioxidant parameters were measured in blood and FF, and their correlations were studied. Subsequently, 27 representative GC samples were selected for RNA sequencing analysis. The GC gene expression data of LH-responsive genes and the estradiol:progesterone ratio in FF were used to identify pre- and post-LH surge cohorts. We compared the transcriptomic profile of subgroups of cows within the highest and lowest quartiles (Q4 vs. Q1) of each parameter, focusing on the pre-LH surge cohort (n = 16, at least 3 in each subgroup). Differentially expressed genes (DEG: adjusted P-value < 0.05, 5% false discovery rate) were determined using DESeq2 analysis and were functionally annotated. Blood and FF ß-carotene and vitamin E concentrations at wk 2, but not at wk 8, were associated with the most pronounced transcriptomic differences in the GC, with up to 341 DEG indicative for lower catabolism, increased oxidoreductase activity and signaling cascades that are known to enhance oocyte developmental competence, increased responsiveness to LH, and a higher steroidogenic activity. In contrast, elevated blood NEFA concentrations at wk 2 (and not at wk 8) were associated with a long-term carryover effect detectable in the GC transcriptome at wk 8 (64 DEG). These genes are related to response to lipids and ketones, oxidative stress, and immune responses, which suggests persistent cellular stress and oxidative damage. This effect was more pronounced in cows with antioxidant deficiencies at wk 8 (up to 148 DEG), with more genes involved in oxidative stress-dependent responses, apoptosis, autophagy and catabolic processes, and mitochondrial damage. Interestingly, within the severe NEB cows (high blood NEFA at wk 2), blood antioxidant concentrations (high vs. low) at wk 8 were associated with up to 194 DEG involved in activation of meiosis and other signaling pathways, indicating a better oocyte supportive capacity. This suggests that the cow antioxidant profile at the time of breeding might alleviate, at least in part, the effect of NEB on GC functions. In conclusion, these results provide further evidence that the metabolic and oxidative stress in dairy cows early postpartum can have long-term effects on GC functions in preovulatory follicles at the time of breeding. The interplay between the effects of antioxidants and NEFA illustrated here might be useful to develop intervention strategies to minimize the effect of severe NEB on fertility.


Assuntos
Antioxidantes , Transcriptoma , Animais , Antioxidantes/metabolismo , Cruzamento , Bovinos , Ácidos Graxos não Esterificados , Feminino , Células da Granulosa/metabolismo , Humanos , Lactação/fisiologia , Período Pós-Parto/metabolismo
10.
Adv Exp Med Biol ; 1387: 171-189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34921349

RESUMO

The oocyte may be exposed to several sources of stress during its growth and maturation, which may lead to reduced fertility. Unfolded protein responses (UPRs) play a central role to maintain cell survival and repair. Transcription of heat shock proteins (HSPs) is a key element to facilitate reestablishment of cellular homeostasis. Unlike somatic cells, cellular mechanisms by which oocytes can sense and respond to stress are not well described. In here, we provide an overview about the impact of cellular stress, particularly due to lipotoxicity, oxidative stress, and heat stress on oocyte developmental competence. Next, we focus on the expression of HSPs in oocytes and their potential role in UPRs in oocytes and embryos. This is based on a comprehensive shotgun proteomic analysis of mature bovine oocytes performed in our laboratory, as well as a literature review. The topic is discussed in light of our understanding of similar mechanisms in other cell types and the limited transcriptional activity in oocytes. More fundamental research is needed both at the transcriptomic and proteomic levels to further understand cell stress response mechanisms in oocytes and early developing embryos, their critical interactions, and their long-term effects. Strategies to provide targeted external support to prevent or reduce cell stress levels during oocyte maturation or early embryo development under maternal metabolic stress conditions should be developed to maximize the odds of producing good quality embryos and guarantee optimal viability.


Assuntos
Oócitos , Proteômica , Animais , Bovinos , Desenvolvimento Embrionário/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Oogênese
11.
Reprod Biol Endocrinol ; 19(1): 166, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736458

RESUMO

BACKGROUND: Maternal metabolic disorders are linked to reduced metabolic health and oocyte quality. Obese women are advised to lose weight before conception to increase pregnancy chances. However, as human studies show no univocal guidelines, more research is necessary to provide fundamental insights in the consequences of dietary weight loss on oocyte quality. Therefore, we investigated the impact of diet normalization or calorie restricted diet for two, four or six weeks, as preconception care intervention (PCCI), in obese mice on metabolic health and oocyte quality. METHODS: Outbred female mice were fed a control (CTRL) or high-fat (HF) diet for 7 weeks (7w). Afterwards, HF-mice were put on different PCCIs, resulting in four treatment groups: 1) control diet up to 13w, 2) HF diet up to 13w (HF_HF), switch from a HF (7w) to 3) an ad libitum control diet (HF_CTRL) or 4) 30% calorie restricted control diet (HF_CR) for two, four or six weeks. Body weight, metabolic health, oocyte quality and overall fertility results were assessed. RESULTS: Negative effects of HF diet on metabolic health, oocyte quality and pregnancy rates were confirmed. HF_CTRL mice progressively improved insulin sensitivity, glucose tolerance, serum insulin and cholesterol from PCCI w2 to w4. No further improvements in metabolic health were present at PCCI w6. However, PCCI w6 showed best oocyte quality improvements. Mature oocytes still showed elevated lipid droplet volume and mitochondrial activity but a significant reduction in ROS levels and ROS: active mitochondria ratio compared with HF_HF mice. HF_CR mice restored overall insulin sensitivity and glucose tolerance by PCCI w4. However, serum insulin, cholesterol and ALT remained abnormal. At PCCI w6, glucose tolerance was again reduced. However, only at PCCI w6, oocytes displayed reduced ROS levels and restored mitochondrial activity compared with HF_HF mice. In addition, at PCCI w6, both PCCI groups showed decreased mitochondrial ultrastructural abnormalities compared with the HF_HF group and restored pregnancy rates. CONCLUSIONS: Diet normalization for 4 weeks showed to be the shortest, most promising intervention to improve metabolic health. Most promising improvements in oocyte quality were seen after 6 weeks of intervention in both PCCI groups. This research provides fundamental insights to be considered in developing substantiated preconception guidelines for obese women planning for pregnancy.


Assuntos
Restrição Calórica/métodos , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Oócitos/metabolismo , Cuidado Pré-Concepcional/métodos , Animais , Glicemia/metabolismo , Feminino , Insulina/metabolismo , Doenças Metabólicas/dietoterapia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/dietoterapia , Gravidez , Redução de Peso/fisiologia
12.
Eur J Pharm Biopharm ; 158: 143-155, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33248266

RESUMO

Polymeric nanoparticles (NPs) are produced using bio-compatible and bio-degradable materials such as PLGA (Poly(lactic-co-glycolic acid)). This technology provides a valuable tool to deliver molecules to the subcellular level with a relatively low risk of cytotoxicity. However their use in the field of reproductive biotechnology is not yet scientifically substantiated. The aim of the present study was to test if PLGA NPs can be taken-up by cumulus-enclosed oocytes as a first step towards potential oocyte-targeted applications to enhance oocyte quality and fertility. We conducted a series of experiments using bovine in vitro oocyte maturation as a model to study FITC-conjugated PLGA internalization (using laser-scanning confocal microscopy) and the effect of some important physical (particle size) and chemical (conjugation with PEG) modifications. We show evidence that PLGA NPs can be taken-up by cumulus cells and to a less extent by the enclosed oocytes regardless of the NP size. The NP transfer to the oocyte appear to be transcellular (via cumulus cells and transzonal projections) and paracellular (via zona pellucida). The PLGA NPs were detected in the vicinity of the oocyte as quick as 2 h post-exposure in a protein-free medium and did not compromise cumulus cell viability nor subsequent early embryo development or embryo quality. These results suggest that PLGA NPs may have promising applications as carriers for drug or molecule delivery targeting cumulus cells and oocytes.


Assuntos
Portadores de Fármacos/farmacocinética , Técnicas de Maturação in Vitro de Oócitos/métodos , Nanopartículas/toxicidade , Oócitos/crescimento & desenvolvimento , Oogênese/efeitos dos fármacos , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos , Feminino , Microscopia Intravital , Masculino , Microscopia Confocal , Nanopartículas/química , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Espermatozoides/fisiologia , Testes de Toxicidade Aguda
13.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147848

RESUMO

Elevated non-esterified fatty acid (NEFA), predominantly palmitic acid (PA), concentrations in blood and follicular fluid are a common feature in maternal metabolic disorders such as obesity. This has a direct negative impact on oocyte developmental competence and the resulting blastocyst quality. We use NEFA-exposure during bovine oocyte in vitro maturation (IVM) as a model to mimic oocyte maturation under maternal metabolic stress conditions. However, the impact of supportive embryo culture conditions on these metabolically compromised zygotes are not known yet. We investigated if the addition of anti-apoptotic, antioxidative and mitogenic factors (namely, Insulin-Transferrin-Selenium (ITS) or serum) to embryo culture media would rescue development and important embryo quality parameters (cell proliferation, apoptosis, cellular metabolism and gene expression patterns) of bovine embryos derived from high PA- or high NEFA-exposed oocytes when compared to controls (exposed to basal NEFA concentrations). ITS supplementation during in vitro culture of PA-exposed oocytes supported the development of lower quality embryos during earlier development. However, surviving blastocysts were of inferior quality. In contrast, addition of serum to the culture medium did not improve developmental competence of PA-exposed oocytes. Furthermore, surviving embryos displayed higher apoptotic cell indices and an aberrant cellular metabolism. We conclude that some supportive embryo culture supplements like ITS and serum may increase IVF success rates of metabolically compromised oocytes but this may increase the risk of reduced embryo quality and may thus have other long-term consequences.


Assuntos
Blastocisto/citologia , Técnicas de Cultura Embrionária/métodos , Oócitos/citologia , Animais , Apoptose , Bovinos , Proliferação de Células , Feminino , Líquido Folicular/química , Perfilação da Expressão Gênica , Glucose/química , Técnicas de Maturação in Vitro de Oócitos , Insulina/química , Oócitos/efeitos dos fármacos , Oogênese , Ácido Pirúvico/química , Selênio/química , Transferrina/química
14.
Reproduction ; 160(6): 887-903, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33112768

RESUMO

In cattle, pre-implantation embryo development occurs within the confinement of the uterine lumen. Current understanding of the bi-lateral molecular interactions between embryo and endometrium that are required for a successful pregnancy is limited. We hypothesized that the nature and intensity of reciprocal embryo-endometrium interactions depend on the extent of their physical proximity. Bovine endometrial epithelial cells (bEECs) and morulae were co-cultured in juxtacrine (Contact+) or non-juxtacrine (Contact-) apposition. Co-culture with bEECs improved blastocyst rates on day 7.5, regardless of juxtaposition. Contact+ regulated transcription of 1797 endometrial genes vs only 230 in the Contact- group compared to their control (no embryos) counterparts. A subset of 50 overlapping differentially expressed genes (DEGs) defined embryo-induced effects on bEEC transcriptome irrespective of juxtaposition. Functional analysis revealed pathways associated with interferon signaling and prostanoid biosynthesis. A total of 175 genes displayed a graded expression level depending on Contact+ or Contact-. These genes were involved in interferon-related and antigen presentation pathways. Biological processes enriched exclusively in Contact+ included regulation of cell cycle and sex-steroid biosynthesis. We speculate that, in vivo, embryonic signals fine-tune the function of surrounding cells to ultimately maximize pregnancy success.


Assuntos
Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Bovinos , Técnicas de Cocultura , Embrião de Mamíferos/citologia , Endométrio/citologia , Células Epiteliais/citologia , Feminino , Gravidez
15.
Sci Rep ; 10(1): 9806, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555236

RESUMO

Maternal obesity can cause reduced oocyte quality and subfertility. Mitochondrial dysfunction plays a central role here, and most often inbred mouse models are used to study these pathways. We hypothesized that the mouse genetic background can influence the impact of high fat diet (HFD)-induced obesity on oocyte quality. We compared the inbred C57BL/6 (B6) and the outbred Swiss strains after feeding a HFD for 13w. HFD-mice had increased body weight gain, hypercholesterolemia, and increased oocyte lipid droplet (LD) accumulation in both strains. LD distribution was strain-dependent. In Swiss mouse oocytes, HFD significantly increased mitochondrial inner membrane potential (MMP), reactive oxygen species concentrations, mitochondrial ultrastructural abnormalities (by 46.4%), and endoplasmic reticulum (ER) swelling, and decreased mtDNA copy numbers compared with Swiss controls (P < 0.05). Surprisingly, B6-control oocytes exhibited signs of cellular stress compared to the Swiss controls (P < 0.05); upregulated gene expression of ER- and oxidative stress markers, high mitochondrial ultrastructural abnormalities (48.6%) and ER swelling. Consequently, the HFD impact on B6 oocyte quality was less obvious, with 9% higher mitochondrial abnormalities, and no additive effect on MMP and stress marks compared to B6 control (P > 0.1). Interestingly, mtDNA in B6-HFD oocytes was increased suggesting defective mitophagy. In conclusion, we show evidence that the genetic background or inbreeding can affect mitochondrial functions in oocytes and may influence the impact of HFD on oocyte quality. These results should create awareness when choosing and interpreting data obtained from different mouse models before extrapolating to human applications.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Obesidade/patologia , Oócitos/efeitos dos fármacos , Oócitos/patologia , Animais , Feminino , Endogamia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Hum Reprod ; 35(2): 293-307, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32112081

RESUMO

STUDY QUESTION: Does oocyte maturation under lipolytic conditions have detrimental carry-over effects on post-hatching embryo development of good-quality blastocysts after transfer? SUMMARY ANSWER: Surviving, morphologically normal blastocysts derived from bovine oocytes that matured under lipotoxic conditions exhibit long-lasting cellular dysfunction at the transcriptomic and metabolic levels, which coincides with retarded post-hatching embryo development. WHAT IS KNOWN ALREADY: There is increasing evidence showing that following maturation in pathophysiologically relevant lipotoxic conditions (as in obesity or metabolic syndrome), surviving blastocysts of good (transferable) morphological quality have persistent transcriptomic and epigenetic alteration even when in vitro embryo culture takes place under standard conditions. However, very little is known about subsequent development in the uterus after transfer. STUDY DESIGN, SIZE, DURATION: Bovine oocytes were matured in vitro in the presence of pathophysiologically relevant, high non-esterified fatty acid (NEFA) concentrations (HIGH PA), or in basal NEFA concentrations (BASAL) as a physiological control. Eight healthy multiparous non-lactating Holstein cows were used for embryo transfers. Good-quality blastocysts (pools of eight) were transferred per cow, and cows were crossed over for treatments in the next replicate. Embryos were recovered 7 days later and assessed for post-hatching development, phenotypic features and gene expression profile. Blastocysts from solvent-free and NEFA-free maturation (CONTROL) were also tested for comparison. PARTICIPANTS/MATERIALS, SETTING, METHODS: Recovered Day 14 embryos were morphologically assessed and dissected into embryonic disk (ED) and extraembryonic tissue (EXT). Samples of EXT were cultured for 24 h to assess cellular metabolic activity (glucose and pyruvate consumption and lactate production) and embryos' ability to signal for maternal recognition of pregnancy (interferon-τ secretion; IFN-τ). ED and EXT samples were subjected to RNA sequencing to evaluate the genome-wide transcriptome patterns. MAIN RESULTS AND THE ROLE OF CHANCE: The embryo recovery rate at Day 14 p.i. was not significantly different among treatment groups (P > 0.1). However, higher proportions of HIGH PA embryos were retarded in growth (in spherical stage) compared to the more elongated tubular stage embryos in the BASAL group (P < 0.05). Focusing on the normally developed tubular embryos in both groups, HIGH PA exposure resulted in altered cellular metabolism and altered transcriptome profile particularly in pathways related to redox-regulating mechanisms, apoptosis, cellular growth, interaction and differentiation, energy metabolism and epigenetic mechanisms, compared to BASAL embryos. Maturation under BASAL conditions did not have any significant effects on post-hatching development and cellular functions compared to CONTROL. LARGE-SCALE DATA: The datasets of RNA sequencing analysis are available in the NCBI's Gene Expression Omnibus (GEO) repository, series accession number GSE127889 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127889). Datasets of differentially expressed genes and their gene ontology functions are available in the Mendeley datasets at http://dx.doi.org/10.17632/my2z7dvk9j.2. LIMITATIONS, REASONS FOR CAUTION: The bovine model was used here to allow non-invasive embryo transfer and post-hatching recovery on Day 14. There are physiological differences in some characteristics of post-hatching embryo development between human and cows, such as embryo elongation and trophoblastic invasion. However, the main carry-over effects of oocyte maturation under lipolytic conditions described here are evident at the cellular level and therefore may also occur during post-hatching development in other species including humans. In addition, post-hatching development was studied here under a healthy uterine environment to focus on carry-over effects originating from the oocyte, whereas additional detrimental effects may be induced by maternal metabolic disorders due to adverse changes in the uterine microenvironment. RNA sequencing results were not verified by qPCR, and no solvent control was included. WIDER IMPLICATIONS OF THE FINDINGS: Our observations may increase the awareness of the importance of maternal metabolic stress at the level of the preovulatory oocyte in relation to carry-over effects that may persist in the transferrable embryos. It should further stimulate new research about preventive and protective strategies to optimize maternal metabolic health around conception to maximize embryo viability and thus fertility outcome. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Flemish Research Fund (FWO grant 11L8716N and FWO project 42/FAO10300/6541). The authors declare there are no conflicts of interest.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Transcriptoma , Animais , Blastocisto , Bovinos , Transferência Embrionária , Feminino , Humanos , Oócitos , Gravidez
17.
Hum Reprod ; 34(10): 1984-1998, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31625574

RESUMO

STUDY QUESTION: Can we use a mitochondrial-targeted antioxidant (Mitoquinone) during in vitro embryo culture to rescue developmental competence of oocytes matured under lipotoxic conditions, exhibiting mitochondrial dysfunction and oxidative stress? SUMMARY ANSWER: Supplementation of embryo culture media with Mitoquinone reduced oxidative stress and prevented mitochondrial uncoupling in embryos derived from metabolically compromised oocytes in vitro, leading to higher blastocyst rates and lower blastomeric apoptosis. WHAT IS KNOWN ALREADY: Maternal metabolic disorders, such as obesity and type-II diabetes are associated with hyperlipidemia and elevated free fatty acid (FFA) concentrations in the ovarian follicular fluid (FF). Oocyte maturation under these lipotoxic conditions results in increased oxidative stress levels, mitochondrial dysfunction, reduced developmental competence and disappointing IVF results. STUDY DESIGN, SIZE, DURATION: A well-described bovine oocyte IVM model was used, where a pathophysiologically relevant elevated FF concentrations of palmitic acid (PA; 150 µM or 300 µM) were added to induce oxidative stress. After fertilization (Day 0, D0), zygotes were in vitro cultured (IVC, from D1 to D8) in standard fatty acid-free media in the presence or absence of Mitoquinone or its carrier triphenyl-phosphonium. PARTICIPANTS/MATERIALS, SETTING, METHODS: Embryo cleavage and fragmentation (D2) and blastocyst rates (D8) were recorded. Mitochondrial activity and oxidative stress in cleaved embryos at D2 were determined using specific fluorogenic probes and confocal microscopy. D8 blastocysts were used to (i) examine the expression of marker genes related to mitochondrial unfolded protein responses (UPRmt; HSPD1 and HSPE1), mitochondrial biogenesis (TFAM), endoplasmic reticulum (ER) UPR (ATF4, ATF6 and BiP) and oxidative stress (CAT, GPX1 and SOD2) using real time RT-PCR; (ii) determine cell differentiation and apoptosis using CDX-2 and cleaved caspase-3 immunostaining; and (iii) measure mtDNA copy numbers. This was tested in a series of experiments with at least three independent replicates for each, using a total of 2525 oocytes. Differences were considered significant if a P value was <0.05 after Bonferroni correction. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA during IVM followed by culture under control conditions resulted in a significant increase in oxidative stress in embryos at D2. This was associated with a significant reduction in mitochondrial inner membrane potential (uncoupling) compared with solvent control (P < 0.05). The magnitude of these effects was PA-concentration dependent. Consequently, development to the blastocysts stage was significantly hampered. Surviving blastocysts exhibited high apoptotic cell indices and upregulated mRNA expression indicating persistent oxidative stress, mitochondrial and ER UPRs. In contrast, supplementation of PA-derived zygotes with Mitoquinone during IVC (i) prevented mitochondrial uncoupling and alleviated oxidative stress at D2; and (ii) rescued blastocyst quality; normalized oxidative stress and UPR related genes and apoptotic cell indices (P > 0.01 compared with solvent control). Mitoquinone also improved blastocyst rate in PA-exposed groups, an effect that was dependent on PA concentration. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This is a fundamental study performed using a bovine in vitro model using PA-induced lipotoxicity during oocyte maturation. PA is the most predominant FFA in the FF that is known to induce lipotoxicity; however, in vivo maturation in patients suffering from maternal metabolic disorders involve more factors that cannot be represented in one model. Nevertheless, focusing on the carryover oxidative stress as a known key factor affecting developmental competence, and considering the novel beneficial rescuing effects of Mitoquinone shown here, we believe this model is of high biological relevance. WIDER IMPLICATIONS OF THE FINDINGS: Human oocytes collected for IVF treatments from patients with maternal metabolic disorders are vulnerable to lipotoxicity and oxidative stress during in vivo maturation. The results shown here suggest that mitochondrial targeted therapy, such as using Mitoquinone, during IVC may rescue the developmental competence and quality of these compromised oocytes. After further clinical trials, this may be a valuable approach to increase IVF success rates for infertile patients experiencing metabolic disorders. STUDY FUNDING/COMPETING INTEREST(S): This study was financially supported by a BOF/KP grant number 34399, from the University of Antwerp, Belgium. W.F.A.M. was supported by a postdoctoral fellowship from the Research Foundation-Flanders (FWO), grant number 12I1417N, Antwerp, Belgium. The Leica SP 8 confocal microscope used in this study was funded by the Hercules Foundation of the Flemish Government (Hercules grant AUHA.15.12). All authors have no financial or non-financial competing interests to declare.


Assuntos
Antioxidantes/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Animais , Bovinos , Meios de Cultura/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Líquido Folicular/metabolismo , Humanos , Infertilidade Feminina/etiologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/terapia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Oócitos/citologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/metabolismo , Ubiquinona/farmacologia
18.
Sci Rep ; 9(1): 3673, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842615

RESUMO

Maternal lipolytic metabolic disorders result in a lipotoxic microenvironment in the ovarian follicular fluid (FF) which deteriorates oocyte quality. Although cellular stress response mechanisms are well defined in somatic cells, they remain largely unexplored in oocytes, which have distinct organelle structure and nuclear transcription patterns. Here we used shotgun proteomic analyses to study cellular responses of bovine oocytes and cumulus cells (CCs) after in vitro maturation under lipotoxic conditions; in the presence of pathophysiological palmitic acid (PA) concentration as a model. Differentially regulated proteins (DRPs) were mainly localized in the endoplasmic reticulum, mitochondria and nuclei of CCs and oocytes, however the DRPs and their direction of change were cell-type specific. Proteomic changes in PA-exposed CCs were predominantly pro-apoptotic unfolded protein responses (UPRs), mitochondrial and metabolic dysfunctions, and apoptotic pathways. This was also functionally confirmed. Interestingly, although the oocytes were enclosed by CCs during PA exposure, elevated cellular stress levels were also evident. However, pro-survival UPRs, redox regulatory and compensatory metabolic mechanisms were prominent despite evidence of mitochondrial dysfunction, oxidative stress, and reduced subsequent embryo development. The data provides a unique insight that enriches the understanding of the cellular stress responses in metabolically-compromised oocytes and forms a fundamental base to identify new targets for fertility treatments as discussed within.


Assuntos
Células do Cúmulo/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Ácido Palmítico/toxicidade , Proteínas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Blastocisto/citologia , Blastocisto/fisiologia , Bovinos , Células do Cúmulo/efeitos dos fármacos , Técnicas de Cultura Embrionária , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Espécies Reativas de Oxigênio/metabolismo
19.
Int J Vet Sci Med ; 6(2): 265-269, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30564607

RESUMO

Recent advances in nanotechnology have tremendously expanded its possible applications in biomedicine. Although, the effects of nanoparticles (NPs) at cellular and tissue levels have not been fully understood, some of these biological effects might be employed in assisted reproduction to improve male fertility particularly by enhancing sperm cell quality either in vivo or in vitro. This review summarises the available literature regarding the potential applications of nanomaterials in farm animal reproduction, with a specific focus on the male gamete and on different strategies to improve breeding performances, transgenesis and targeted delivery of substances to a sperm cell. Antioxidant, antimicrobial properties and special surface binding ligand functionalization and their applications for sperm processing and cryopreservation have been reviewed. In addition, nanotoxicity and detrimental effects of NPs on sperm cells are also discussed due to the increasing concerns regarding the environmental impact of the expanding use of nanotechnologies on reproduction.

20.
Int J Mol Sci ; 19(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544719

RESUMO

The zebrafish (Danio rerio) embryo is currently explored as an alternative for developmental toxicity testing. As maternal metabolism is lacking in this model, knowledge of the disposition of xenobiotics during zebrafish organogenesis is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this study was to assess cytochrome P450 (CYP) activity in zebrafish embryos and larvae until 14 d post-fertilization (dpf) by using a non-specific CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR) and a CYP1-specific substrate, i.e., 7-ethoxyresorufin (ER). Moreover, the constitutive mRNA expression of CYP1A, CYP1B1, CYP1C1, CYP1C2, CYP2K6, CYP3A65, CYP3C1, phase II enzymes uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and sulfotransferase 1st1 (SULT1ST1), and an ATP-binding cassette (ABC) drug transporter, i.e., abcb4, was assessed during zebrafish development until 32 dpf by means of quantitative PCR (qPCR). The present study showed that trancripts and/or the activity of these proteins involved in disposition of xenobiotics are generally low to undetectable before 72 h post-fertilization (hpf), which has to be taken into account in teratogenicity testing. Full capacity appears to be reached by the end of organogenesis (i.e., 120 hpf), although CYP1-except CYP1A-and SULT1ST1 were shown to be already mature in early embryonic development.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Preparações Farmacêuticas/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Biotransformação/genética , Embrião não Mamífero/metabolismo , Larva/genética , Oxazinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...