Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Prog Phys ; 86(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36279851

RESUMO

Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements. We summarize the relevant phenomenological models and the status of the searches in a comprehensive list of kaon and hyperon decay channels. We identify new search strategies for under-explored signatures, and demonstrate that the improved sensitivities from current and next-generation experiments could lead to a qualitative leap in the exploration of light dark sectors.

2.
Phys Rev Lett ; 117(7): 071802, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563951

RESUMO

We analyze the energy and zenith angle distributions of the latest two-year IceCube data set of upward-going atmospheric neutrinos to constrain sterile neutrinos at the eV scale in the 3+1 scenario. We find that the parameters favored by a combination of LSND and MiniBooNE data are excluded at more than the 99% C.L. We explore the impact of nonstandard matter interactions on this exclusion and find that the exclusion holds for nonstandard interactions (NSIs) that are within the stringent model-dependent bounds set by collider and neutrino scattering experiments. However, for large NSI parameters subject only to model-independent bounds from neutrino oscillation experiments, the LSND and MiniBooNE data are consistent with IceCube.

3.
Phys Rev Lett ; 109(9): 091801, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002822

RESUMO

The recent discovery by the Daya-Bay and RENO experiments, that θ(13) is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of θ(13) implies that θ(23) is likely to be different from π/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of θ(23). We show that a 50 kT magnetized liquid argon neutrino detector can ascertain the mass hierarchy with a significance larger than 4σ with moderate exposure times, and the octant at the level of 2-3σ with greater exposure.

4.
Phys Rev Lett ; 108(8): 081802, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463518

RESUMO

Using the nonobservance of missing mass events in the leptonic kaon decay K→µX, we place a strong constraint on exotic parity-violating gauge interactions of the right-handed muon. By way of illustration, we apply it to an explanation of the proton size anomaly that invokes such a new force; scenarios in which the gauge boson decays invisibly or is long lived are constrained.

5.
Phys Rev Lett ; 106(15): 153001, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568549

RESUMO

A measurement of the Lamb shift in muonic hydrogen yields a charge radius of the proton that is smaller than the CODATA value by about 5 standard deviations. We explore the possibility that new scalar, pseudoscalar, vector, and tensor flavor-conserving nonuniversal interactions may be responsible for the discrepancy. We consider exotic particles that, among leptons, couple preferentially to muons and mediate an attractive nucleon-muon interaction. We find that the many constraints from low energy data disfavor new spin-0, spin-1, and spin-2 particles as an explanation.

6.
Phys Rev Lett ; 95(21): 211802, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16384133

RESUMO

We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...