Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 6(1): 3-6, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28170195

RESUMO

This Perspective discusses some activities of mesenchymal stem cells (MSCs) in the context of angiogenesis, focusing on contrasting effects that could call into question the extent to which MSCs can be used clinically in the future. We report on the antiangiogenic/antiproliferative effects of specific MSC populations (including bone marrow MSCs), their paracrine activity, tissue heterogeneity, and endothelial cell interactions. Also discussed are what could lead to contrasting effects of the influence of MSCs in regulating angiogenesis, pointing to some negative effects of these cells. In conclusion, this article highlights important aspects of MSC behavior within the perspective of translational medicine applications. Stem Cells Translational Medicine 2017;6:3-6.


Assuntos
Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Animais , Células da Medula Óssea/citologia , Comunicação Celular , Células Endoteliais/citologia , Humanos
2.
Reproduction ; 149(6): 563-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25755287

RESUMO

Mammalian placentation is dependent upon the action of trophoblast cells at the time of implantation. Appropriate fetal growth, regulated by maternal nutrition and nutrient transport across the placenta, is a critical factor for adult offspring long-term health. We have demonstrated that a mouse maternal low-protein diet (LPD) fed exclusively during preimplantation development (Emb-LPD) increases offspring growth but programmes adult cardiovascular and metabolic disease. In this study, we investigate the impact of maternal nutrition on post-implantation trophoblast phenotype and fetal growth. Ectoplacental cone explants were isolated at day 8 of gestation from female mice fed either normal protein diet (NPD: 18% casein), LPD (9% casein) or Emb-LPD and cultured in vitro. We observed enhanced spreading and cell division within proliferative and secondary trophoblast giant cells (TGCs) emerging from explants isolated from LPD-fed females when compared with NPD and Emb-LPD explants after 24 and 48 h. Moreover, both LPD and Emb-LPD explants showed substantial expansion of TGC area during 24-48 h, not observed in NPD. No difference in invasive capacity was observed between treatments using Matrigel transwell migration assays. At day 17 of gestation, LPD- and Emb-LPD-fed conceptuses displayed smaller placentas and larger fetuses respectively, resulting in increased fetal:placental ratios in both groups compared with NPD conceptuses. Analysis of placental and yolk sac nutrient signalling within the mammalian target of rapamycin complex 1 pathway revealed similar levels of total and phosphorylated downstream targets across groups. These data demonstrate that early post-implantation embryos modify trophoblast phenotype to regulate fetal growth under conditions of poor maternal nutrition.


Assuntos
Desenvolvimento Fetal/fisiologia , Células Gigantes/citologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Placentação/fisiologia , Trofoblastos/citologia , Animais , Movimento Celular/fisiologia , Dieta com Restrição de Proteínas , Feminino , Células Gigantes/metabolismo , Camundongos , Fosforilação , Gravidez , Transdução de Sinais/fisiologia , Trofoblastos/metabolismo
3.
Development ; 141(5): 1140-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24504338

RESUMO

Mammalian extra-embryonic lineages perform the crucial role of nutrient provision during gestation to support embryonic and fetal growth. These lineages derive from outer trophectoderm (TE) and internal primitive endoderm (PE) in the blastocyst and subsequently give rise to chorio-allantoic and visceral yolk sac placentae, respectively. We have shown maternal low protein diet exclusively during mouse preimplantation development (Emb-LPD) is sufficient to cause a compensatory increase in fetal and perinatal growth that correlates positively with increased adult-onset cardiovascular, metabolic and behavioural disease. Here, to investigate early mechanisms of compensatory nutrient provision, we assessed the influence of maternal Emb-LPD on endocytosis within extra-embryonic lineages using quantitative imaging and expression of markers and proteins involved. Blastocysts collected from Emb-LPD mothers within standard culture medium displayed enhanced TE endocytosis compared with embryos from control mothers with respect to the number and collective volume per cell of vesicles with endocytosed ligand and fluid and lysosomes, plus protein expression of megalin (Lrp2) LDL-family receptor. Endocytosis was also stimulated using similar criteria in the outer PE-like lineage of embryoid bodies formed from embryonic stem cell lines generated from Emb-LPD blastocysts. Using an in vitro model replicating the depleted amino acid (AA) composition found within the Emb-LPD uterine luminal fluid, we show TE endocytosis response is activated through reduced branched-chain AAs (leucine, isoleucine, valine). Moreover, activation appears mediated through RhoA GTPase signalling. Our data indicate early embryos regulate and stabilise endocytosis as a mechanism to compensate for poor maternal nutrient provision.


Assuntos
Endocitose/fisiologia , Animais , Blastocisto/citologia , Células Cultivadas , Dieta com Restrição de Proteínas , Endoderma/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Gravidez , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA