Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ecology ; 103(2): e03599, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34816429

RESUMO

Understanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge. We used censuses of four major groups of organisms (soil bacteria, fungi, ground insects, and trees) at two observation scales (1-m2 sampling point vs. 2,500-m2 plots) in a topographically standardized sampling design replicated in two tropical rainforests with contrasting relationships between spatial distance and nutrient availability. We modeled the decay of assemblage similarity for each taxon set and site to assess the relative contributions of spatial distance and nutrient availability distance. Then, we evaluated the potentially structuring effect of tree composition over all other taxa. The similarity of nutrient content in the litter and topsoil had a stronger and more consistent selective effect than did dispersal limitation, particularly for bacteria, fungi, and trees at the plot level. Ground insects, the only group assessed with the capacity of active dispersal, had the highest species turnover and the flattest nonsignificant distance-decay relationship, suggesting that neither dispersal limitation nor nutrient availability were fundamental drivers of their community assembly at this scale of analysis. Only the fungal communities at one of our study sites were clearly coordinated with tree composition. The spatial distance at the smallest scale was more important than nutrient selection for the bacteria, fungi, and insects. The lower initial similarity and the moderate variation in composition identified by these distance-decay models, however, suggested that the effects of stochastic sampling were important at this smaller spatial scale. Our results highlight the importance of nutrients as one of the main environmental drivers of rainforest communities irrespective of organismic or propagule size and how the overriding effect of the analytical scale influences the interpretation, leading to the perception of greater importance of dispersal limitation and ecological drift over selection associated with environmental niches at decreasing observation scales.


Assuntos
Biodiversidade , Solo , Ecossistema , Florestas , Nutrientes , Microbiologia do Solo , Árvores
3.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607952

RESUMO

Humans have made such dramatic and permanent changes to Earth's landscapes that much of it is now substantially and irreversibly altered from its preanthropogenic state. Remote islands, until recently isolated from humans, offer insights into how these landscapes evolved in response to human-induced perturbations. However, little is known about when and how remote systems were colonized because archaeological data and historical records are scarce and incomplete. Here, we use a multiproxy approach to reconstruct the initial colonization and subsequent environmental impacts on the Azores Archipelago. Our reconstructions provide unambiguous evidence for widespread human disturbance of this archipelago starting between 700-60+50 and 850-60+60 Common Era (CE), ca. 700 y earlier than historical records suggest the onset of Portuguese settlement of the islands. Settlement proceeded in three phases, during which human pressure on the terrestrial and aquatic ecosystems grew steadily (i.e., through livestock introductions, logging, and fire), resulting in irreversible changes. Our climate models suggest that the initial colonization at the end of the early Middle Ages (500 to 900 CE) occurred in conjunction with anomalous northeasterly winds and warmer Northern Hemisphere temperatures. These climate conditions likely inhibited exploration from southern Europe and facilitated human settlers from the northeast Atlantic. These results are consistent with recent archaeological and genetic data suggesting that the Norse were most likely the earliest settlers on the islands.


Assuntos
Ecossistema , Meio Ambiente , Atividades Humanas , Migração Humana , Agricultura , Açores , Mudança Climática , Modelos Climáticos , Fezes/química , Humanos
4.
Glob Chang Biol ; 27(22): 5989-6003, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34383341

RESUMO

Soil phosphatase enzymes are produced by plant roots and microorganisms and play a key role in the cycling of phosphorus (P), an often-limiting element in terrestrial ecosystems. The production of these enzymes in soil is the most important biological strategy for acquiring phosphate ions from organic molecules. Previous works showed how soil potential phosphatase activity is mainly driven by climatic conditions and soil nitrogen (N) and carbon. Nonetheless, future trends of the activity of these enzymes under global change remain little known. We investigated the influence of some of the main drivers of change on soil phosphatase activity using a meta-analysis of results from 97 published studies. Our database included a compilation of N and P fertilization experiments, manipulation experiments with increased atmospheric CO2 concentration, warming, and drought, and studies comparing invaded and non-invaded ecosystems. Our results indicate that N fertilization leads to higher phosphatase activity, whereas P fertilization has the opposite effect. The rise of atmospheric CO2 levels or the arrival of invasive species also exhibits positive response ratios on the activity of soil phosphatases. However, the occurrence of recurrent drought episodes decreases the activity of soil phosphatases. Our analysis did not reveal statistically significant effects of warming on soil phosphatase activity. In general, soil enzymatic changes in the reviewed experiments depended on the initial nutrient and water status of the ecosystems. The observed patterns evidence that future soil phosphatase activity will not only depend on present-day soil conditions but also on potential compensations or amplifications among the different drivers of global change. The responses of soil phosphatases to the global change drivers reported in this study and the consideration of cost-benefit approaches based on the connection of the P and N cycle will be useful for a better estimation of phosphatase production in carbon (C)-N-P models.


Assuntos
Ecossistema , Solo , Nitrogênio , Monoéster Fosfórico Hidrolases , Fósforo
5.
Ecol Evol ; 11(13): 8969-8982, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257939

RESUMO

Resorption is the active withdrawal of nutrients before leaf abscission. This mechanism represents an important strategy to maintain efficient nutrient cycling; however, resorption is poorly characterized in old-growth tropical forests growing in nutrient-poor soils. We investigated nutrient resorption from leaves in 39 tree species in two tropical forests on the Guiana Shield, French Guiana, to investigate whether resorption efficiencies varied with soil nutrient, seasonality, and species traits. The stocks of P in leaves, litter, and soil were low at both sites, indicating potential P limitation of the forests. Accordingly, mean resorption efficiencies were higher for P (35.9%) and potassium (K; 44.6%) than for nitrogen (N; 10.3%). K resorption was higher in the wet (70.2%) than in the dry (41.7%) season. P resorption increased slightly with decreasing total soil P; and N and P resorptions were positively related to their foliar concentrations. We conclude that nutrient resorption is a key plant nutrition strategy in these old-growth tropical forests, that trees with high foliar nutrient concentration reabsorb more nutrient, and that nutrients resorption in leaves, except P, are quite decoupled from nutrients in the soil. Seasonality and biochemical limitation played a role in the resorption of nutrients in leaves, but species-specific requirements obscured general tendencies at stand and ecosystem level.

6.
Sci Rep ; 10(1): 2302, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041976

RESUMO

We observed strong positive relationships between soil properties and forest dynamics of growth and mortality across twelve primary lowland tropical forests in a phosphorus-poor region of the Guiana Shield. Average tree growth (diameter at breast height) increased from 0.81 to 2.1 mm yr-1 along a soil texture gradient from 0 to 67% clay, and increasing metal-oxide content. Soil organic carbon stocks in the top 30 cm ranged from 30 to 118 tons C ha-1, phosphorus content ranged from 7 to 600 mg kg-1 soil, and the relative abundance of arbuscular mycorrhizal fungi ranged from 0 to 50%, all positively correlating with soil clay, and iron and aluminum oxide and hydroxide content. In contrast, already low extractable phosphorus (Bray P) content decreased from 4.4 to <0.02 mg kg-1 in soil with increasing clay content. A greater prevalence of arbuscular mycorrhizal fungi in more clayey forests that had higher tree growth and mortality, but not biomass, indicates that despite the greater investment in nutrient uptake required, soils with higher clay content may actually serve to sustain high tree growth in tropical forests by avoiding phosphorus losses from the ecosystem. Our study demonstrates how variation in soil properties that retain carbon and nutrients can help to explain variation in tropical forest growth and mortality, but not biomass, by requiring niche specialization and contributing to biogeochemical diversification across this region.


Assuntos
Biomassa , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Solo/química , Árvores/crescimento & desenvolvimento , Carbono/análise , Carbono/metabolismo , Micorrizas/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Fósforo/metabolismo , Floresta Úmida , Microbiologia do Solo , Árvores/microbiologia , Clima Tropical
7.
Proc Biol Sci ; 286(1910): 20191300, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31480974

RESUMO

Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.


Assuntos
Floresta Úmida , Animais , Carbono , Nitrogênio , Folhas de Planta , Solo/química
8.
Front Big Data ; 2: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33693374

RESUMO

Acid phosphatase produced by plants and microbes plays a fundamental role in the recycling of soil phosphorus (P). A quantification of the spatial variation in potential acid phosphatase activity (AP) on large spatial scales and its drivers can help to reduce the uncertainty in our understanding of bio-availability of soil P. We applied two machine-learning methods (Random forests and back-propagation artificial networks) to simulate the spatial patterns of AP across Europe by scaling up 126 site observations of potential AP activity from field samples measured in the laboratory, using 12 environmental drivers as predictors. The back-propagation artificial network (BPN) method explained 58% of AP variability, more than the regression tree model (49%). In addition, BPN was able to identify the gradients in AP along three transects in Europe. Partial correlation analysis revealed that soil nutrients (total nitrogen, total P, and labile organic P) and climatic controls (annual precipitation, mean annual temperature, and temperature amplitude) were the dominant factors influencing AP variations in space. Higher AP occurred in regions with higher mean annual temperature, precipitation and higher soil total nitrogen. Soil TP and Po were non-monotonically correlated with modeled AP for Europe, indicating diffident strategies of P utilization by biomes in arid and humid area. This study helps to separate the influences of each factor on AP production and to reduce the uncertainty in estimating soil P availability. The BPN model trained with European data, however, could not produce a robust global map of AP due to the lack of representative measurements of AP for tropical regions. Filling this data gap will help us to understand the physiological basis of P-use strategies in natural soils.

9.
Glob Chang Biol ; 23(3): 1282-1291, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27272953

RESUMO

Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant-soil nutrient concentrations. We conducted a meta-analysis of 215 peer-reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient-poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant-soil elemental composition and stoichiometry.


Assuntos
Espécies Introduzidas , Nitrogênio , Fósforo , Plantas , Ecossistema , Folhas de Planta , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...