Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 245: 116150, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657366

RESUMO

Niraparib is a potent and orally bioavailable inhibitor of poly (ADP-ribose) polymerase (PARP) with high specificity for isoforms 1 and 2. It has been approved by the U.S. Food and Drug Administration for ovarian cancer maintenance therapy and is currently under development for various cancers, including glioblastoma. To assess central nervous system (CNS) penetration of niraparib in glioblastoma patients, a novel bioanalytical method was developed to measure total and unbound niraparib levels in human brain tumor tissue and cerebrospinal fluid (CSF). The method was validated using plasma as a surrogate matrix over the concentration range of 1-10,000 nM on an LC-MS/MS system. The MS/MS detection was conducted in positive electrospray ionization mode, while chromatography was performed using a Kinetex™ PS C18 column with a total 3.5-minute gradient elution run time. The maximum coefficient of variation for both intra- and inter-day precision was 10.6%, with accuracy ranging from 92.8% - 118.5% across all matrices. Niraparib was stable in human brain homogenate for at least 6 hours at room temperature (RT) and 32 days at -20°C, as well as in stock and working solutions for at least 21 hours (RT) and 278 days (4°C). Equilibrium dialysis experiments revealed the fractions unbound of 0.05 and 0.16 for niraparib in human brain and plasma, respectively. The validated method is currently employed to assess niraparib levels in human glioblastoma tissue, CSF, and plasma in an ongoing trial on newly diagnosed glioblastoma and recurrent IDH1/2(+) ATRX mutant glioma patients (NCT05076513). Initial results of calculated total (Kp) and unbound (Kp,uu) tumor-to-plasma partition coefficients indicate significant brain penetration ability of niraparib in glioblastoma patients.


Assuntos
Neoplasias Encefálicas , Indazóis , Piperidinas , Inibidores de Poli(ADP-Ribose) Polimerases , Espectrometria de Massas em Tandem , Humanos , Piperidinas/farmacocinética , Piperidinas/sangue , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Indazóis/farmacocinética , Indazóis/administração & dosagem , Indazóis/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Cromatografia Líquida/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Reprodutibilidade dos Testes , Encéfalo/metabolismo , Sulfonamidas/farmacocinética , Sulfonamidas/análise , Sulfonamidas/administração & dosagem , Espectrometria de Massa com Cromatografia Líquida
2.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991020

RESUMO

Histone deacetylase (HDAC) inhibitors have garnered considerable interest for the treatment of adult and pediatric malignant brain tumors. However, owing to their broad-spectrum nature and inability to effectively penetrate the blood-brain barrier, HDAC inhibitors have failed to provide substantial clinical benefit to patients with glioblastoma (GBM) to date. Moreover, global inhibition of HDACs results in widespread toxicity, highlighting the need for selective isoform targeting. Although no isoform-specific HDAC inhibitors are currently available, the second-generation hydroxamic acid-based HDAC inhibitor quisinostat possesses subnanomolar specificity for class I HDAC isoforms, particularly HDAC1 and HDAC2. It has been shown that HDAC1 is the essential HDAC in GBM. This study analyzed the neuropharmacokinetic, pharmacodynamic, and radiation-sensitizing properties of quisinostat in preclinical models of GBM. It was found that quisinostat is a well-tolerated and brain-penetrant molecule that extended survival when administered in combination with radiation in vivo. The pharmacokinetic-pharmacodynamic-efficacy relationship was established by correlating free drug concentrations and evidence of target modulation in the brain with survival benefit. Together, these data provide a strong rationale for clinical development of quisinostat as a radiosensitizer for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Criança , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Histona Desacetilases/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Isoformas de Proteínas/metabolismo , Encéfalo/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499771

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and warrants further study as well as timely treatment. Additionally, the mechanisms of the brain's intrinsic defense against chronic injury are not yet fully understood. Herein, we examined the response of the main neurogenic niches to amyloid exposure and the associated changes in structure and synaptic activity. Flow cytometry of Nestin-, Vimentin-, Nestin/Vimentin-, NeuN-, GFAP-, NeuN/GFAP-, NSE-, BrdU-, Wnt-, BrdU/Wnt-, VEGF-, Sox14-, VEGF/Sox14-, Sox10-, Sox2-, Sox10/Sox2-, Bax-, and Bcl-xL-positive cells was performed in the subventricular zone (SVZ), hippocampus, and cerebral cortex of rat brains on 90th day after intracerebroventricular (i.c.v.) single injection of a fraction of ß-amyloid (Aß) (1-42). The relative structural changes in these areas and disruptions to synaptic activity in the entorhinal cortex-hippocampus circuit were also evaluated. Our flow analyses revealed a reduction in the numbers of Nestin-, Vimentin-, and Nestin/Vimentin-positive cells in neurogenic niches and the olfactory bulb. These changes were accompanied by an increased number of BrdU-positive cells in the hippocampus and SVZ. The latter changes were strongly correlated with changes in the numbers of VEGF- and VEGF/Sox14-positive cells. The morphological changes were characterized by significant neural loss, a characteristic shift in entorhinal cortex-hippocampus circuit activity, and decreased spontaneous alternation in a behavioral test. We conclude that although an injection of Aß (1-42) induced stem cell proliferation and triggered neurogenesis at a certain stage, this process was incomplete and led to neural stem cell immaturity. We propose the idea of enhancing adult neurogenesis as a promising strategy for preventing dementia at healthy elderly people andpeople at high risk for developing AD, or treating patients diagnosed with AD.


Assuntos
Doença de Alzheimer , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Neurogênese , Peptídeos beta-Amiloides/farmacologia , Encéfalo , Hipocampo , Bromodesoxiuridina/farmacologia , Proteínas Amiloidogênicas/farmacologia
4.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290790

RESUMO

Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessive reactive oxygen species production, inefficient antioxidant capacity, or a combination are elusive. Identifying key oxidative stress contributors could inform targeted therapy. The absence of Drosophila parkin causes selective degeneration of a dopaminergic neuron cluster that is functionally homologous to the substantia nigra. By comparing observations in these to similar non-degenerating neurons, we may begin to understand mechanisms by which parkin loss of function causes selective degeneration. Using mitochondrially targeted redox-sensitive GFP2 fused with redox enzymes, we observed a sustained increased mitochondrial hydrogen peroxide levels in vulnerable dopaminergic neurons of parkin-null flies. Only transient increases in hydrogen peroxide were observed in similar but non-degenerating neurons. Glutathione redox equilibrium is preferentially dysregulated in vulnerable neuron mitochondria. To shed light on whether dysregulated glutathione redox equilibrium primarily contributes to oxidative stress, we supplemented food with folic acid, which can increase cysteine and glutathione levels. Folic acid improved survival, climbing, and transiently decreased hydrogen peroxide and glutathione redox equilibrium but did not mitigate whole-brain oxidative stress.

5.
J Pharm Anal ; 12(4): 601-609, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36105156

RESUMO

A sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was established for the quantification of total and unbound concentrations of LY3214996, an extracellular signal-regulated kinase inhibitor; abemaciclib, a cyclin-dependent kinase 4/6 inhibitor; and abemaciclib active metabolites, M2 and M20, in human plasma, brain tumor, and cerebrospinal fluid samples. The method was validated over a concentration range of 0.2-500 nM within a total run time of 3.8 min using isocratic elution on a Kinetex™ F5 column. Detection was performed on a Sciex QTRAP 6500+ mass spectrometer employing multiple reaction monitoring mode under positive electrospray ionization. The intra- and inter-batch accuracy as well as the precision of the method for all matrices was within ±20% and ≤20% at the lower limit of quantification, and within ±15% and ≤15% for other quality control levels for all analytes. The unbound fractions of drugs and metabolites in spiked and patient samples were determined using an optimized equilibrium dialysis. The validated method was successfully applied in a phase 0/2 clinical trial to assess the central nervous system penetration of LY3214996 and abemaciclib.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-955472

RESUMO

A sensitive and rapid liquid chromatography tandem mass spectrometry(LC-MS/MS)method was established for the quantification of total and unbound concentrations of LY3214996,an extracellular signal-regulated kinase inhibitor;abemaciclib,a cyclin-dependent kinase 4/6 inhibitor;and abemaciclib active metabolites,M2 and M20,in human plasma,brain tumor,and cerebrospinal fluid samples.The method was validated over a concentration range of 0.2-500 nM within a total run time of 3.8 min using isocratic elution on a Kinetex? Fs column.Detection was performed on a Sciex QTRAP 6500+mass spectrometer employing multiple reaction monitoring mode under positive electrospray ionization.The intra-and inter-batch accuracy as well as the precision of the method for all matrices was within±20%and≤20%at the lower limit of quantification,and within±15%and≤15%for other quality control levels for all analytes.The unbound fractions of drugs and metabolites in spiked and patient samples were determined using an optimized equilibrium dialysis.The validated method was successfully applied in a phase 0/2 clinical trial to assess the central nervous system penetration of LY3214996 and abemaciclib.

7.
Stroke ; 52(8): 2661-2670, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157864

RESUMO

Background and Purpose: The incidences of intracranial aneurysm and aneurysmal subarachnoid hemorrhage are high in postmenopausal women. Although population-based studies suggest that hormone replacement therapy is beneficial for postmenopausal women with intracranial aneurysms, estrogen replacement may no longer be recommended for the prevention of chronic diseases given its association with adverse outcomes, such as cancer and ischemic stroke. The isoflavone daidzein and its intestinal metabolite equol are bioactive phytoestrogens and potent agonists of estrogen receptors. Given their estrogenic properties, we investigated whether the isoflavones daidzein and equol are protective against the formation and rupture of intracranial aneurysms in a mouse model of the postmenopausal state. Methods: We induced intracranial aneurysms in ovariectomized adult female mice using a combination of induced systemic hypertension and a single injection of elastase into the cerebrospinal fluid. We fed the mice with an isoflavone-free diet with/without daidzein supplementation, or in a combination of intraperitoneal equol, or oral vancomycin treatment. We also used estrogen receptor beta knockout mice. Results: Both dietary daidzein and supplementation with its metabolite, equol, were protective against aneurysm formation in ovariectomized mice. The protective effects of daidzein and equol required estrogen receptor-ß. The disruption of the intestinal microbial conversion of daidzein to equol abolished daidzein's protective effect against aneurysm formation. Mice treated with equol had lower inflammatory cytokines in the cerebral arteries, suggesting that phytoestrogens modulate inflammatory processes important to intracranial aneurysm pathogenesis. Conclusions: Our study establishes that both dietary daidzein and its metabolite, equol, protect against aneurysm formation in ovariectomized female mice through the activation of estrogen receptor-ß and subsequent suppression of inflammation. Dietary daidzein's protective effect required the intestinal conversion to equol. Our results indicate the potential therapeutic value of dietary daidzein and its metabolite, equol, for the prevention of the formation of intracranial aneurysms and related subarachnoid hemorrhage.


Assuntos
Equol/uso terapêutico , Aneurisma Intracraniano/prevenção & controle , Aneurisma Intracraniano/fisiopatologia , Isoflavonas/uso terapêutico , Fitoestrógenos/uso terapêutico , Animais , Equol/farmacologia , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/sangue , Isoflavonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovariectomia/efeitos adversos , Fitoestrógenos/farmacologia
8.
Biomed Chromatogr ; 34(8): e4844, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32250456

RESUMO

The aim of this study was to establish a high-throughput and sensitive LC-MS/MS method for the determination of doxepin and its major active metabolite nordoxepin in human plasma. It has been designed for bioequivalence study for formulations containing 25 mg of doxepin. Doxepin and nordoxepin were extracted from human plasma samples by protein precipitation with acetonitrile by using protein precipitation 96-well plates. The analyte was separated using a Phenomenex Kinetex Biphenyl column (100 × 2.1 mm, 2.6 µm) using isocratic elution with a mobile phase of 20 mM ammonium formate (30%) and acetonitrile:methanol 3:7 v:v (70%) at a flow rate of 0.5 mL/min and an injection volume of 10 µL. The detection was performed using a triple quadrupole mass spectrometer by multiple reaction monitoring mode to monitor the precursor-to-product ion transitions of m/z 280.4 → 107.0 and 283.4 → 235.0 for doxepin and doxepin-D3, respectively, and 266.3 → 106.9 and 269.3 → 235.0 for nordoxepin and nordoxepin-D3, respectively, in positive electrospray ionization mode. The total run time was 3.5 min. The method was validated over a concentration range of 50-10,000 pg/mL using a Triple Quad 4500 MS System (Sciex) for both analytes. The developed and validated method can be successfully used to study the bioequivalence/pharmacokinetics of doxepin and nordoxepin.


Assuntos
Cromatografia Líquida/métodos , Doxepina/análogos & derivados , Doxepina/sangue , Espectrometria de Massas em Tandem/métodos , Precipitação Química , Doxepina/química , Doxepina/isolamento & purificação , Estabilidade de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Biomed Chromatogr ; 34(1): e4710, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31630425

RESUMO

A protein precipitation method for the determination of clobazam (CLB) and its major active metabolite N-desmethylclobazam (N-CLB) in human plasma by liquid chromatography tandem mass spectrometry (LC-MS/MS) was established. CLB and N-CLB were extracted from human plasma samples by protein precipitation with methanol. Analyte separation was done using a Phenomenex Kinetex™ Biphenyl (50 × 2.1 mm, 1.7 µm) column using isocratic elution with a mobile phase of 5 mm ammonium formate with 0.01% ammonium hydroxide (40%) and methanol (60%) at a flow rate of 0.4 mL/min and an injection volume of 10 µL. The detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode to monitor the precursor-to-product ion transitions of m/z 301.1 → 259.0, 306.0 → 263.9 for CLB and CLB-D5 and 287.0 → 245.0, 292.0 → 250.0 for N-CLB and N-CLB-D5 in positive electrospray ionization mode, respectively. The method was validated over a concentration range of 2.0-750 ng/mL for CLB and 0.7-200 ng/mL for N-CLB on SCIEX Triple Quad 4500 MS System. Total run time was 5 min. This method has been designed for bioequivalence study for formulations containing 20 mg of CLB.


Assuntos
Benzodiazepinas/sangue , Cromatografia Líquida/métodos , Clobazam/sangue , Espectrometria de Massas em Tandem/métodos , Precipitação Química , Estabilidade de Medicamentos , Hemólise , Humanos , Hiperlipidemias , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...