Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396371

RESUMO

Osteoderms (ODs) are mineralized tissue embedded within the skin and are particularly common in reptiles. They are generally thought to form a protective layer between the soft tissues of the animal and potential external threats, although other functions have been proposed. The aim of this study was to characterize OD variation across the lizard body. Adults of three lizard species were chosen for this study. After whole body CT scanning of each lizard, single ODs were extracted from 10 different anatomical regions, CT scanned, and characterized using sectioning and nanoindentation. Morphological analysis and material characterization revealed considerable diversity in OD structure across the species investigated. The scincid Tiliqua gigas was the only studied species in which ODs had a similar external morphology across the head and body. Greater osteoderm diversity was found in the gerrhosaurid Broadleysaurus major and the scincid Tribolonotus novaeguineae. Dense capping tissue, like that reported for Heloderma, was found in only one of the three species examined, B. major. Osteoderm structure can be surprisingly complex and variable, both among related taxa, and across the body of individual animals. This raises many questions about OD function but also about the genetic and developmental factors controlling OD shape.

2.
Anat Rec (Hoboken) ; 306(10): 2415-2424, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36748783

RESUMO

Osteoderms (ODs) are calcified organs formed directly within the skin of most major extant tetrapod lineages. Lizards possibly show the greatest diversity in ODs morphology and distribution. ODs are commonly hypothesized to function as a defensive armor. Here we tested the hypothesis that cranial osteoderms also contribute to the mechanics of the skull during biting. A series of in vivo experiments were carried out on three specimens of Tiliqua gigas. Animals were induced to bite a force plate while a single cranial OD was strain gauged. A finite element (FE) model of a related species, Tiliqua scincoides, was developed and used to estimate the level of strain across the same OD as instrumented in the in vivo experiments. FE results were compared to the in vivo data and the FE model was modified to test two hypothetical scenarios in which all ODs were (i) removed from, and (ii) fused to, the skull. In vivo data demonstrated that the ODs were carrying load during biting. The hypothetical FE models showed that when cranial ODs were fused to the skull, the overall strain across the skull arising from biting was reduced. Removing the ODs showed an opposite effect. In summary, our findings suggest that cranial ODs contribute to the mechanics of the skull, even when they are loosely attached.


Assuntos
Lagartos , Animais , Lagartos/anatomia & histologia , Força de Mordida , Crânio/anatomia & histologia , Cabeça , Fenômenos Biomecânicos
3.
Bioengineering (Basel) ; 9(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290472

RESUMO

Additive manufacturing has been used to develop a variety of scaffold designs for clinical and industrial applications. Mechanical properties (i.e., compression, tension, bending, and torsion response) of these scaffolds are significantly important for load-bearing orthopaedic implants. In this study, we designed and additively manufactured porous metallic biomaterials based on two different types of triply periodic minimal surface structures (i.e., gyroid and diamond) that mimic the mechanical properties of bone, such as porosity, stiffness, and strength. Physical and mechanical properties, including compressive, tensile, bending, and torsional stiffness and strength of the developed scaffolds, were then characterised experimentally and numerically using finite element method. Sheet thickness was constant at 300 µm, and the unit cell size was varied to generate different pore sizes and porosities. Gyroid scaffolds had a pore size in the range of 600-1200 µm and a porosity in the range of 54-72%, respectively. Corresponding values for the diamond were 900-1500 µm and 56-70%. Both structure types were validated experimentally, and a wide range of mechanical properties (including stiffness and yield strength) were predicted using the finite element method. The stiffness and strength of both structures are comparable to that of cortical bone, hence reducing the risks of scaffold failure. The results demonstrate that the developed scaffolds mimic the physical and mechanical properties of cortical bone and can be suitable for bone replacement and orthopaedic implants. However, an optimal design should be chosen based on specific performance requirements.

4.
J Exp Biol ; 225(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36177797

RESUMO

Many species of lizards are partially enveloped by a dermal armour made of ossified units called osteoderms. Lizard osteoderms demonstrate considerable species-specific variation in morphology and histology. Although a physical/protective role (against predators, prey, conspecifics and impact loading during falls) is frequently advanced, empirical data on the biomechanics of lizard osteoderms are scarce, limiting our understanding of form-function relationships. Here, we report deformation recorded at the surface of temporal osteoderms during controlled external loading of preserved specimens of 11 lizard species (Tiliqua rugosa, Tiliqua scincoides, Corucia zebrata, Pseudopus apodus, Timon lepidus, Matobosaurus validus, Broadleysaurus major, Tribolonotus gracilis, Tribolonotus novaeguineae, Heloderma horridum and Heloderma suspectum). Based on the strain recorded in situ and from isolated osteoderms, the skin of the species investigated can be ranked along a marked stiffness gradient that mostly reflects the features of the osteoderms. Some species such as T. rugosa and the two Heloderma species had very stiff osteoderms and skin while others such as T. lepidus and P. apodus were at the other end of the spectrum. Histological sections of the osteoderms suggest that fused (versus compound) osteoderms with a thick layer of capping tissue are found in species with a stiff skin. In most cases, loading neighbouring osteoderms induced a large strain in the instrumented osteoderm, attesting that, in most species, lizard osteoderms are tightly interconnected. These data empirically confirm that the morphological diversity observed in lizard osteoderms is matched by variability in biomechanical properties.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos , Osso e Ossos/anatomia & histologia , Lagartos/anatomia & histologia , Osteogênese , Pele
5.
Materials (Basel) ; 15(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888197

RESUMO

Additively manufactured Ti scaffolds have been used for bone replacement and orthopaedic applications. In these applications, both morphological and mechanical properties are important for their in vivo performance. Additively manufactured Ti6Al4V triply periodic minimal surface (TPMS) scaffolds with diamond and gyroid structures are known to have high stiffness and high osseointegration properties, respectively. However, morphological deviations between the as-designed and as-built types of these scaffolds have not been studied before. In this study, the morphological and mechanical properties of diamond and gyroid scaffolds at macro and microscales were examined. The results demonstrated that the mean printed strut thickness was greater than the designed target value. For diamond scaffolds, the deviation increased from 7.5 µm (2.5% excess) for vertical struts to 105.4 µm (35.1% excess) for horizontal struts. For the gyroid design, the corresponding deviations were larger, ranging from 12.6 µm (4.2% excess) to 198.6 µm (66.2% excess). The mean printed pore size was less than the designed target value. For diamonds, the deviation of the mean pore size from the designed value increased from 33.1 µm (-3.0% excess) for vertical struts to 92.8 µm (-8.4% excess) for horizontal struts. The corresponding deviation for gyroids was larger, ranging from 23.8 µm (-3.0% excess) to 168.7 µm (-21.1% excess). Compressive Young's modulus of the bulk sample, gyroid and diamond scaffolds was calculated to be 35.8 GPa, 6.81 GPa and 7.59 GPa, respectively, via the global compression method. The corresponding yield strength of the samples was measured to be 1012, 108 and 134 MPa. Average microhardness and Young's modulus from α and ß phases of Ti6Al4V from scaffold struts were calculated to be 4.1 GPa and 131 GPa, respectively. The extracted morphology and mechanical properties in this study could help understand the deviation between the as-design and as-built matrices, which could help develop a design compensation strategy before the fabrication of the scaffolds.

6.
Sci Rep ; 12(1): 9693, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690633

RESUMO

Children with syndromic forms of craniosynostosis undergo a plethora of surgical interventions to resolve the clinical features caused by the premature fusion of cranial sutures. While surgical correction is reliable, the need for repeated rounds of invasive treatment puts a heavy burden on the child and their family. This study explores a non-surgical alternative using mechanical loading of the cranial joints to prevent or delay craniofacial phenotypes associated with Crouzon syndrome. We treated Crouzon syndrome mice before the onset of craniosynostosis by cyclical mechanical loading of cranial joints using a custom designed set-up. Cranial loading applied to the frontal bone partially restores normal skull morphology, significantly reducing the typical brachycephalic appearance. This is underpinned by the delayed closure of the coronal suture and of the intersphenoidal synchondrosis. This study provides a novel treatment alternative for syndromic craniosynostosis which has the potential to be an important step towards replacing, reducing or refining the surgical treatment of all craniosynostosis patients.


Assuntos
Disostose Craniofacial , Craniossinostoses , Animais , Suturas Cranianas/cirurgia , Disostose Craniofacial/cirurgia , Craniossinostoses/genética , Craniossinostoses/cirurgia , Osso Frontal , Humanos , Camundongos , Fenótipo , Crânio/cirurgia
7.
Acta Biomater ; 146: 306-316, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552001

RESUMO

Vertebrate skin is a remarkable organ that supports and protects the body. It consists of two layers, the epidermis and the underlying dermis. In some tetrapods, the dermis includes mineralised organs known as osteoderms (OD). Lizards, with over 7,000 species, show the greatest diversity in OD morphology and distribution, yet we barely understand what drives this diversity. This multiscale analysis of five species of lizards, whose lineages diverged ∼100-150 million years ago, compared the micro- and macrostructure, material properties, and bending rigidity of their ODs, and examined the underlying bones of the skull roof and jaw (including teeth when possible). Unsurprisingly, OD shape, taken alone, impacts bending rigidity, with the ODs of Corucia zebrata being most flexible and those of Timon lepidus being most rigid. Macroscopic variation is also reflected in microstructural diversity, with differences in tissue composition and arrangement. However, the properties of the core bony tissues, in both ODs and cranial bones, were found to be similar across taxa, although the hard, capping tissue on the ODs of Heloderma and Pseudopus had material properties similar to those of tooth enamel. The results offer evidence on the functional adaptations of cranial ODs, but questions remain regarding the factors driving their diversity. STATEMENT OF SIGNIFICANCE: Understanding nature has always been a significant source of inspiration for various areas of the physical and biological sciences. Here we unravelled a novel biomineralization, i.e. calcified tissue, OD, forming within the skin of lizards which show significant diversity across the group. A range of techniques were used to provide an insight into these exceptionally diverse natural structures, in an integrated, whole system fashion. Our results offer some suggestions into the functional and biomechanical adaptations of OD and their hierarchical structure. This knowledge can provide a potential source of inspiration for biomimetic and bioinspired designs, applicable to the manufacturing of light-weight, damage-tolerant and multifunctional materials for areas such as tissue engineering.


Assuntos
Lagartos , Dente , Animais , Epiderme , Lagartos/anatomia & histologia , Pele/anatomia & histologia , Crânio
8.
Biol Rev Camb Philos Soc ; 97(1): 1-19, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34397141

RESUMO

Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non-overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two-layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this 'bony armour' might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro- and macrostructure, development, and function, with a view to stimulating further work.


Assuntos
Jacarés e Crocodilos , Lagartos , Animais , Pele
9.
Bioinspir Biomim ; 16(6)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34525458

RESUMO

Osteoderms (OD) are mineralised dermal structures consisting mainly of calcium phosphate and collagen. The sheer diversity of OD morphologies and their distribution within the skin of lizards makes these reptiles an ideal group in which to study ODs. Nonetheless, our understanding of the structure, development, and function of lizard ODs remains limited. The specific aims of this study were: (1) to carry out a detailed morphological characterisation of ODs in three lizard species; (2) to design and manufacture biomimetic sheets of ODs corresponding to the OD arrangement in each species; and (3) to evaluate the impact resistance of the manufactured biomimetic sheets under a drop weight test. Skin samples of the anguimorphsH. suspectumandO. ventralis, and the skinkC. zebratawere obtained from frozen lab specimens. Following a series of imaging and image characterisations, 3D biomimetic models of the ODs were developed. 3D models were then printed using additive manufacturing techniques and subjected to drop weight impact tests. The results suggest that a 3D printed compound of overlapping ODs as observed inCoruciacan potentially offers a higher energy absorption by comparison with the overlapping ODs ofOphisaurusand the non-overlapping ODs ofHeloderma.Compound overlapping ODs need to be further tested and explored as a biomimetic concept to increase the shock absorption capabilities of devices and structures.


Assuntos
Lagartos , Animais , Biomimética , Pele
10.
Sci Rep ; 10(1): 3, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913294

RESUMO

Early fusion of the sagittal suture is a clinical condition called, sagittal craniosynostosis. Calvarial reconstruction is the most common treatment option for this condition with a range of techniques being developed by different groups. Computer simulations have a huge potential to predict the calvarial growth and optimise the management of this condition. However, these models need to be validated. The aim of this study was to develop a validated patient-specific finite element model of a sagittal craniosynostosis. Here, the finite element method was used to predict the calvarial morphology of a patient based on its preoperative morphology and the planned surgical techniques. A series of sensitivity tests and hypothetical models were carried out and developed to understand the effect of various input parameters on the result. Sensitivity tests highlighted that the models are sensitive to the choice of input parameter. The hypothetical models highlighted the potential of the approach in testing different reconstruction techniques. The patient-specific model highlighted that a comparable pattern of calvarial morphology to the follow up CT data could be obtained. This study forms the foundation for further studies to use the approach described here to optimise the management of sagittal craniosynostosis.


Assuntos
Suturas Cranianas/crescimento & desenvolvimento , Craniossinostoses/patologia , Crânio/citologia , Pré-Escolar , Simulação por Computador , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Craniotomia , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Estudos Longitudinais , Estudos Retrospectivos , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
11.
Phys Rev Lett ; 122(4): 048103, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768286

RESUMO

The newborn mammalian cranial vault consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Early fusion of these sutures leads to a medical condition known as craniosynostosis. The mechanobiology of normal and craniosynostotic skull growth is not well understood. In a series of previous studies, we characterized and modeled radial expansion of normal and craniosynostotic (Crouzon) mice. Here, we describe a new modeling algorithm to simulate bone formation at the sutures in normal and craniosynostotic mice. Our results demonstrate that our modeling approach is capable of predicting the observed ex vivo pattern of bone formation at the sutures in the aforementioned mice. The same approach can be used to model different calvarial reconstruction in children with craniosynostosis to assist in the management of this complex condition.


Assuntos
Modelos Biológicos , Osteogênese , Crânio/crescimento & desenvolvimento , Animais , Camundongos , Crânio/diagnóstico por imagem , Crânio/fisiologia , Microtomografia por Raio-X
12.
J Anat ; 232(3): 440-448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243252

RESUMO

During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2C342Y/+ mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the models were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life.


Assuntos
Simulação por Computador , Craniossinostoses/patologia , Crânio/crescimento & desenvolvimento , Animais , Análise de Elementos Finitos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Microtomografia por Raio-X/métodos
13.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28566514

RESUMO

During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions (n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates.


Assuntos
Simulação por Computador , Modelos Biológicos , Crânio/crescimento & desenvolvimento , Fenômenos Biomecânicos , Humanos , Lactente , Recém-Nascido , Reprodutibilidade dos Testes , Software
14.
J Arthroplasty ; 31(8): 1849-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26989031

RESUMO

BACKGROUND: Lack of fracture movement could be a potential cause of periprosthetic femoral fracture (PFF) fixation failures. This study aimed to test whether the use of distal far cortical locking screws reduces the overall stiffness of PFF fixations and allows an increase in fracture movement compared to standard locking screws while retaining the overall strength of the PFF fixations. METHODS: Twelve laboratory models of Vancouver type B1 PFFs were developed. In all specimens, the proximal screw fixations were similar, whereas in 6 specimens, distal locking screws were used, and in the other six specimens, far cortical locking screws. The overall stiffness, fracture movement, and pattern of strain distribution on the plate were measured in stable and unstable fractures under anatomic 1-legged stance. Specimens with unstable fracture were loaded to failure. RESULTS: No statistical difference was found between the stiffness and fracture movement of the two groups in stable fractures. In the unstable fractures, the overall stiffness and fracture movement of the locking group was significantly higher and lower than the far cortical group, respectively. Maximum principal strain on the plate was consistently lower in the far cortical group, and there was no significant difference between the failure loads of the 2 groups. CONCLUSION: The results indicate that far cortical locking screws can reduce the overall effective stiffness of the locking plates and increase the fracture movement while maintaining the overall strength of the PFF fixation construct. However, in unstable fractures, alternative fixation methods, for example, long stem revision might be a better option.


Assuntos
Placas Ósseas , Parafusos Ósseos , Fraturas do Fêmur/cirurgia , Fixação Interna de Fraturas/métodos , Fraturas Periprotéticas/cirurgia , Desenho de Prótese , Fenômenos Biomecânicos , Fêmur , Humanos , Modelos Teóricos , Falha de Prótese , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...