Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515096

RESUMO

The SARS-CoV-2 pandemic demonstrated the need for potent and broad-spectrum vaccines. This study reports the development and testing of a lumpy skin disease virus (LSDV)-vectored vaccine against SARS-CoV-2, utilizing stabilized spike and conserved nucleocapsid proteins as antigens to develop robust immunogenicity. Construction of the vaccine (LSDV-SARS2-S,N) was confirmed by polymerase chain reaction (PCR) amplification and sequencing. In vitro characterization confirmed that cells infected with LSDV-SARS2-S,N expressed SARS-CoV-2 spike and nucleocapsid protein. In BALB/c mice, the vaccine elicited high magnitude IFN-γ ELISpot responses (spike: 2808 SFU/106 splenocytes) and neutralizing antibodies (ID50 = 6552). Testing in hamsters, which emulate human COVID-19 disease progression, showed the development of high titers of neutralizing antibodies against the Wuhan and Delta SARS-CoV-2 variants (Wuhan ID50 = 2905; Delta ID50 = 4648). Additionally, hamsters vaccinated with LSDV-SARS2-S,N displayed significantly less weight loss, lung damage, and reduced viral RNA copies following SARS-CoV-2 infection with the Delta variant as compared to controls, demonstrating protection against disease. These data demonstrate that LSDV-vectored vaccines display promise as an effective SARS-CoV-2 vaccine and as a potential vaccine platform for communicable diseases in humans and animals. Further efficacy testing and immune response analysis, particularly in non-human primates, are warranted.


Assuntos
COVID-19 , Vírus da Doença Nodular Cutânea , Vacinas , Animais , Cricetinae , Bovinos , Camundongos , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
2.
Front Immunol ; 14: 1143034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063887

RESUMO

East Coast fever is an acute bovine disease caused by the apicomplexan parasite Theileria parva and is regarded as one of the most important tick-vectored diseases in Africa. The current vaccination procedure has many drawbacks, as it involves the use of live T. parva sporozoites. As a novel vaccination strategy, we have constructed the recombinant lumpy skin disease virus (LSDV) named LSDV-SODis-p67HA-BLV-Gag, encoding a modified form of the T. parva p67 surface antigen (p67HA), as well as the bovine leukemia virus (BLV) gag gene for the formation of virus-like particles (VLPs) to potentially enhance p67 immunogenicity. In place of the native sequence, the chimeric p67HA antigen has the human tissue plasminogen activator signal sequence and the influenza hemagglutinin A2 transmembrane domain and cytoplasmic tail. p67HA was detected on the surface of infected cells, and VLPs comprising BLV Gag and p67HA were produced. We also show that higher multiple bands observed in western blot analysis are due to glycosylation of p67. The two vaccines, pMExT-p67HA (DNA) and LSDV-SODis-p67HA-BLV-Gag, were tested for immunogenicity in mice. p67-binding antibodies were produced by vaccinated animals, with higher titers detected in mice vaccinated with the recombinant LSDV. This candidate dual vaccine warrants further testing in cattle.


Assuntos
Doença Nodular Cutânea , Vacinas Protozoárias , Theileriose , Bovinos , Humanos , Camundongos , Animais , Theileriose/prevenção & controle , Theileriose/parasitologia , Ativador de Plasminogênio Tecidual , Proteínas de Protozoários , Doença Nodular Cutânea/prevenção & controle
3.
Front Plant Sci ; 14: 1146234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959936

RESUMO

Molecular farming of vaccines has been heralded as a cheap, safe and scalable production platform. In reality, however, differences in the plant biosynthetic machinery, compared to mammalian cells, can complicate the production of viral glycoproteins. Remodelling the secretory pathway presents an opportunity to support key post-translational modifications, and to tailor aspects of glycosylation and glycosylation-directed folding. In this study, we applied an integrated host and glyco-engineering approach, NXS/T Generation™, to produce a SARS-CoV-2 prefusion spike trimer in Nicotiana benthamiana as a model antigen from an emerging virus. The size exclusion-purified protein exhibited a characteristic prefusion structure when viewed by transmission electron microscopy, and this was indistinguishable from the equivalent mammalian cell-produced antigen. The plant-produced protein was decorated with under-processed oligomannose N-glycans and exhibited a site occupancy that was comparable to the equivalent protein produced in mammalian cell culture. Complex-type glycans were almost entirely absent from the plant-derived material, which contrasted against the predominantly mature, complex glycans that were observed on the mammalian cell culture-derived protein. The plant-derived antigen elicited neutralizing antibodies against both the matched Wuhan and heterologous Delta SARS-CoV-2 variants in immunized hamsters, although titres were lower than those induced by the comparator mammalian antigen. Animals vaccinated with the plant-derived antigen exhibited reduced viral loads following challenge, as well as significant protection from SARS-CoV-2 disease as evidenced by reduced lung pathology, lower viral loads and protection from weight loss. Nonetheless, animals immunized with the mammalian cell-culture-derived protein were better protected in this challenge model suggesting that more faithfully reproducing the native glycoprotein structure and associated glycosylation of the antigen may be desirable.

4.
Biotechnol Bioeng ; 119(10): 2919-2937, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781691

RESUMO

Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and ß1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.


Assuntos
Anticorpos Neutralizantes , Infecções por HIV , Animais , Antígenos Virais/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Anticorpos Anti-HIV , Mamíferos/metabolismo , Polissacarídeos/metabolismo , Coelhos
5.
Nanotechnology ; 33(48)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882111

RESUMO

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Assuntos
HIV-1 , Nanopartículas , Vacinas , Animais , Anticorpos Amplamente Neutralizantes , Células HEK293 , Humanos , Projetos Piloto , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
6.
Vaccines (Basel) ; 9(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835214

RESUMO

The modest protective effects of the RV144 HIV-1 vaccine trial have prompted the further exploration of improved poxvirus vector systems that can yield better immune responses and protection. In this study, a recombinant lumpy skin disease virus (LSDV) expressing HIV-1 CAP256.SU gp150 (Env) and a subtype C mosaic Gag was constructed (LSDVGC5) and compared to the equivalent recombinant modified vaccinia Ankara (MVAGC5). In vitro characterization confirmed that cells infected with recombinant LSDV produced Gag virus-like particles containing Env, and that Env expressed on the surface of the cells infected with LSDV was in a native-like conformation. This candidate HIV-1 vaccine (L) was tested in a rabbit model using different heterologous vaccination regimens, in combination with DNA (D) and MVA (M) vectors expressing the equivalent HIV-1 antigens. The four different vaccination regimens (DDMMLL, DDMLML, DDLMLM, and DDLLMM) all elicited high titers of binding and Tier 1A neutralizing antibodies (NAbs), and some regimens induced Tier 1B NAbs. Furthermore, two rabbits in the DDLMLM group developed low levels of autologous Tier 2 NAbs. The humoral immune responses elicited against HIV-1 Env by the recombinant LSDVGC5 were comparable to those induced by MVAGC5.

7.
Front Plant Sci ; 12: 709344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367227

RESUMO

There is an urgent need to establish large scale biopharmaceutical manufacturing capacity in Africa where the infrastructure for biologics production is severely limited. Molecular farming, whereby pharmaceuticals are produced in plants, offers a cheaper alternative to mainstream expression platforms, and is amenable to rapid large-scale production. However, there are several differences along the plant protein secretory pathway compared to mammalian systems, which constrain the production of complex pharmaceuticals. Viral envelope glycoproteins are important targets for immunization, yet in some cases they accumulate poorly in plants and may not be properly processed. Whilst the co-expression of human chaperones and furin proteases has shown promise, it is presently unclear how plant-specific differences in glycosylation impact the production of these proteins. In many cases it may be necessary to reproduce features of their native glycosylation to produce immunologically relevant vaccines, given that glycosylation is central to the folding and immunogenicity of these antigens. Building on previous work, we transiently expressed model glycoproteins from HIV and Marburg virus in Nicotiana benthamiana and mammalian cells. The proteins were purified and their site-specific glycosylation was determined by mass-spectrometry. Both glycoproteins yielded increased amounts of protein aggregates when produced in plants compared to the equivalent mammalian cell-derived proteins. The glycosylation profiles of the plant-produced glycoproteins were distinct from the mammalian cell produced proteins: they displayed lower levels of glycan occupancy, reduced complex glycans and large amounts of paucimannosidic structures. The elucidation of the site-specific glycosylation of viral glycoproteins produced in N. benthamiana is an important step toward producing heterologous viral glycoproteins in plants with authentic human-like glycosylation.

8.
Front Plant Sci ; 12: 689104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211491

RESUMO

Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.

9.
Front Plant Sci ; 12: 798822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058959

RESUMO

Given the complex maturation requirements of viral glycoproteins and the challenge they often pose for expression in plants, the identification of host constraints precluding their efficient production is a priority for the molecular farming of vaccines. Building on previous work to improve viral glycoprotein production in plants, we investigated the production of a soluble SARS-CoV-2 spike comprising the ectopic portion of the glycoprotein. This was successfully transiently expressed in N. benthamiana by co-expressing the human lectin-binding chaperone calreticulin, which substantially increased the accumulation of the glycoprotein. The spike was mostly unprocessed unless the protease furin was co-expressed which resulted in highly efficient processing of the glycoprotein. Co-expression of several broad-spectrum protease inhibitors did not improve accumulation of the protein any further. The protein was successfully purified by affinity chromatography and gel filtration, although the purified product was heterogenous and the yields were low. Immunogenicity of the antigen was tested in BALB/c mice, and cellular and antibody responses were elicited after low dose inoculation with the adjuvanted protein. This work constitutes an important proof-of-concept for host plant engineering in the context of rapid vaccine development for SARS-CoV-2 and other emerging viruses.

10.
Vaccine ; 39(3): 463-468, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33342638

RESUMO

Two HIV-1 vaccines (SAAVI DNA-C2 and SAAVI MVA-C) were previously developed in South Africa and tested in preclinical studies and Phase 1 clinical trials. Here we report on improvements made to the SAAVI MVA-C vaccine design which include: the use of different promoters for both the Gag and Env genes, replacement of the native Gag gene with an in silico designed subtype C mosaic Gag antigen which forms virus-like particles and the modification of Env by sequence changes to improve stability and transport to the cell surface. A head-to-head comparison of the newly conceived MVAGD5 candidate vaccine with SAAVI MVA-C showed increased in vitro expression of both Env and Gag, and superior immunogenicity in rabbits. MVAGD5 induced high levels of binding antibodies to Env and Tier 1A and 1B neutralizing antibodies, neither of which were induced by SAAVI MVA-C.


Assuntos
Vacinas contra a AIDS , HIV-1 , Vacinas de DNA , Animais , Anticorpos Anti-HIV , HIV-1/genética , Imunização Secundária , Coelhos , África do Sul
11.
Front Plant Sci ; 11: 609207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343609

RESUMO

Immunization with recombinant glycoprotein-based vaccines is a promising approach to induce protective immunity against viruses. However, the complex biosynthetic maturation requirements of these glycoproteins typically necessitate their production in mammalian cells to support their folding and post-translational modification. Despite these clear advantages, the incumbent costs and infrastructure requirements with this approach can be prohibitive in developing countries, and the production scales and timelines may prove limiting when applying these production systems to the control of pandemic viral outbreaks. Plant molecular farming of viral glycoproteins has been suggested as a cheap and rapidly scalable alternative production system, with the potential to perform post-translational modifications that are comparable to mammalian cells. Consequently, plant-produced glycoprotein vaccines for seasonal and pandemic influenza have shown promise in clinical trials, and vaccine candidates against the newly emergent severe acute respiratory syndrome coronavirus-2 have entered into late stage preclinical and clinical testing. However, many other viral glycoproteins accumulate poorly in plants, and are not appropriately processed along the secretory pathway due to differences in the host cellular machinery. Furthermore, plant-derived glycoproteins often contain glycoforms that are antigenically distinct from those present on the native virus, and may also be under-glycosylated in some instances. Recent advances in the field have increased the complexity and yields of biologics that can be produced in plants, and have now enabled the expression of many viral glycoproteins which could not previously be produced in plant systems. In contrast to the empirical optimization that predominated during the early years of molecular farming, the next generation of plant-made products are being produced by developing rational, tailor-made approaches to support their production. This has involved the elimination of plant-specific glycoforms and the introduction into plants of elements of the biosynthetic machinery from different expression hosts. These approaches have resulted in the production of mammalian N-linked glycans and the formation of O-glycan moieties in planta. More recently, plant molecular engineering approaches have also been applied to improve the glycan occupancy of proteins which are not appropriately glycosylated, and to support the folding and processing of viral glycoproteins where the cellular machinery differs from the usual expression host of the protein. Here we highlight recent achievements and remaining challenges in glycoengineering and the engineering of glycosylation-directed folding pathways in plants, and discuss how these can be applied to produce recombinant viral glycoproteins vaccines.

12.
Nat Rev Microbiol ; 18(12): 690-704, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32913297

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic, prompting unprecedented efforts to contain the virus. Many developed countries have implemented widespread testing and have rapidly mobilized research programmes to develop vaccines and therapeutics. However, these approaches may be impractical in Africa, where the infrastructure for testing is poorly developed and owing to the limited manufacturing capacity to produce pharmaceuticals. Furthermore, a large burden of HIV-1 and tuberculosis in Africa could exacerbate the severity of infection and may affect vaccine immunogenicity. This Review discusses global efforts to develop diagnostics, therapeutics and vaccines, with these considerations in mind. We also highlight vaccine and diagnostic production platforms that are being developed in Africa and that could be translated into clinical development through appropriate partnerships for manufacture.


Assuntos
COVID-19/diagnóstico , COVID-19/prevenção & controle , COVID-19/terapia , SARS-CoV-2 , África/epidemiologia , COVID-19/epidemiologia , Tomada de Decisão Clínica , Coinfecção , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Vigilância da População , SARS-CoV-2/fisiologia , Vacinação , Vacinologia/métodos , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
13.
Trends Biotechnol ; 38(9): 1034-1044, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32818443

RESUMO

Production of biologics in plants, or plant molecular pharming, is a promising protein expression technology that is receiving increasing attention from the pharmaceutical industry. Previously, low expression yields of recombinant proteins and the realization that certain post-translational modifications (PTMs) may not occur optimally limited the widespread acceptance of the technology. However, molecular engineering of the plant secretory pathway is now enabling the production of increasingly complex biomolecules using tailored protein-specific approaches to ensure their maturation. These involve the elimination of undesired processing events, and the introduction of heterologous biosynthetic machinery to support the production of specific target proteins. Here, we discuss recent advances in the production of pharmaceutical proteins in plants, which leverage the unique advantages of the technology.


Assuntos
Proteínas de Plantas/biossíntese , Plantas/genética , Proteínas Recombinantes/biossíntese , Via Secretória/genética , Humanos , Agricultura Molecular/tendências , Proteínas de Plantas/genética , Proteínas de Plantas/uso terapêutico , Plantas/química , Plantas Geneticamente Modificadas/genética , Engenharia de Proteínas/tendências , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
14.
Artigo em Inglês | MEDLINE | ID: mdl-32328488

RESUMO

HIV-1 envelope glycoprotein (Env) remains the most relevant target for the elicitation of functional antibodies to HIV by vaccination. However, soluble Env antigens often do not elicit the desired immune responses. Delivering subunit antigens on particulate nanoparticles is an established approach to improve their immunogenicity. In this study the sequence encoding Zera®, a proline-rich domain derived from the γ-zein storage protein, was fused to either the C- or N-terminus of the superinfecting HIV-1 CAP256 gp140 envelope: Zera® generally induces the formation of protein bodies (PBs), which can significantly improve both the immunogenicity and yields of the partner protein. The expression of gp140-Zera® and Zera®-gp140 (N- and C-terminal fusions respectively) in mammalian cells was confirmed by western blot analysis and immunostaining. However, isopycnic ultracentrifugation showed that neither gp140-Zera® nor Zera®-gp140 accumulated in characteristic electron-dense PBs. gp140-Zera® elicited higher binding antibody titers in rabbits to autologous gp140 and V1V2 scaffold than Zera®-gp140. Rabbit anti-gp140-Zera® sera also had significantly higher Tier 1A neutralizing antibody titers than anti-Zera®-gp140 sera. Neither gp140-Zera® nor Zera®-gp140-specific sera neutralized Tier 1B or autologous Tier 2 viruses. These results showed that HIV-1 gp140 tagged with Zera® at either the N- or C-termini elicited high titers of gp140 and V1V2 binding antibodies, and low levels of Tier 1 neutralizing antibodies in rabbits.

15.
Plant Biotechnol J ; 18(10): 2109-2117, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32096288

RESUMO

Plant molecular farming (PMF) is rapidly gaining traction as a viable alternative to the currently accepted paradigm of producing biologics. While the platform is potentially cheaper and more scalable than conventional manufacturing systems, expression yields and appropriate post-translational modifications along the plant secretory pathway remain a challenge for certain proteins. Viral fusion glycoproteins in particular are often expressed at low yields in plants and, in some cases, may not be appropriately processed. Recently, however, transiently or stably engineering the host plant has shown promise as a strategy for producing heterologous proteins with more complex maturation requirements. In this study we investigated the co-expression of a suite of human chaperones to improve the production of a human immunodeficiency virus (HIV) type 1 soluble gp140 vaccine candidate in Nicotiana benthamiana plants. The co-expression of calreticulin (CRT) resulted in a dramatic increase in Env expression and ameliorated the endoplasmic reticulum (ER) stress response - as evidenced by lower transcript abundance of representative stress-responsive genes. The co-expression of CRT similarly improved accumulation of glycoproteins from Epstein-Barr virus (EBV), Rift Valley fever virus (RVFV) and chikungunya virus (CHIKV), suggesting that the endogenous chaperone machinery may impose a bottleneck for their production. We subsequently successfully combined the co-expression of human CRT with the transient expression of human furin, to enable the production of an appropriately cleaved HIV gp140 antigen. These transient plant host engineering strategies are a promising approach for the production of high yields of appropriately processed and cleaved viral glycoproteins.

16.
Vaccines (Basel) ; 8(1)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013223

RESUMO

The HIV-1 envelope glycoprotein (Env) is present on the surface of the virion at a very low density compared to most other enveloped viruses. Substitution of various parts of the stalk domain of Env (gp41) with the corresponding elements from other viral glycoproteins has been shown to increase Env spike density on the cell membrane and surface of virus-like particles (VLPs). In this study, chimeric Env antigens were generated by replacing the transmembrane and cytoplasmic domains of HIV-1 Env with the corresponding regions from the influenza H5 hemagglutinin (HA) (gp140HA2tr) and by replacing the entire gp41 region of Env with the HA2 subunit of HA (gp120HA2). Recombinant DNA and modified vaccinia Ankara (MVA) vaccines expressing HIV-1 subtype C mosaic Gag and gp150 Env or either of the chimeras were generated. Surprisingly, no significant differences were found in the levels of expression of gp150 Env or either of the chimeras on the surface of cells or on Gag VLPs. Differences were, however, observed in the binding of different monoclonal antibodies to the HIV-1 Env. Monoclonal antibodies, which recognized a V1 / V2 quaternary epitope at the tip of the native Env trimer, bound gp150 and gp140HA2tr chimera but failed to bind to the gp120HA2 chimera. Autologous Tier 2 neutralizing antibodies (NAbs) were produced by rabbits inoculated with DNA and MVA vaccines expressing the gp140HA2tr chimera or gp150 Env, but not those immunized with the gp120HA2 Env. These results showed that the addition of an HA2 stalk to HIV-1 gp120 did not improve immunogenicity, but rather that the full-length gp150 was required for optimal presentation of epitopes for the elicitation of a neutralizing antibody response to HIV-1.

17.
Front Plant Sci ; 10: 1378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737007

RESUMO

The development of effective vaccines is urgently needed to curb the spread of human immunodeficiency virus type 1 (HIV-1). A major focal point of current HIV vaccine research is the production of soluble envelope (Env) glycoproteins which reproduce the structure of the native gp160 trimer. These antigens are produced in mammalian cells, which requires a sophisticated infrastructure for manufacture that is mostly absent in developing countries. The production of recombinant proteins in plants is an attractive alternative for the potentially cheap and scalable production of vaccine antigens, especially for developing countries. In this study, we developed a transient expression system in Nicotiana benthamiana for the production of soluble HIV Env gp140 antigens based on two rationally selected virus isolates (CAP256 SU and Du151). The scalability of the platform was demonstrated and both affinity and size exclusion chromatography (SEC) were explored for recovery of the recombinant antigens. Rabbits immunized with lectin affinity-purified antigens developed high titres of binding antibodies, including against the V1V2 loop region, and neutralizing antibodies against Tier 1 viruses. The removal of aggregated Env species by gel filtration resulted in the elicitation of superior binding and neutralizing antibodies. Furthermore, a heterologous prime-boost regimen employing a recombinant modified vaccinia Ankara (rMVA) vaccine, followed by boosts with the SEC-purified protein, significantly improved the immunogenicity. To our knowledge, this is the first study to assess the immunogenicity of a near-full length plant-derived Env vaccine immunogen.

18.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760570

RESUMO

A vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCE A vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1 , Imunização Secundária , Vacinas de DNA , Vaccinia virus , Produtos do Gene env do Vírus da Imunodeficiência Humana , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Feminino , Células HEK293 , HIV-1/genética , HIV-1/imunologia , Humanos , Coelhos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
19.
PLoS One ; 13(12): e0208310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30557314

RESUMO

With the HIV-1 epidemic in southern Africa still rising, a prophylactic vaccine against the region's most prolific subtype (subtype C) would be a significant step forward. In this paper we report on the effect of 2 different adjuvants, AddaVax and AlhydroGel, formulated with HIV-1 subtype C gp140, on the development of binding and neutralising antibody titres in rabbits. AddaVax is a squalene-based oil-in-water nano-emulsion (similar to MF59) which can enhance both cellular and humoral immune responses, whilst AlhydroGel (aluminium hydroxide gel) mainly drives a Th2 response. The gp140 gene tested was derived from the superinfecting virus (SU) from participant CAP256 in the CAPRISA 002 Acute infection cohort. The furin cleavage site of the Env protein was replaced with a flexible linker and an I559P mutation introduced. Lectin affinity purified soluble Env protein was mainly trimeric as judged by molecular weight using BN-PAGE and contained intact broadly neutralising epitopes for the V3-glycan supersite (monoclonal antibodies PGT128 and PGT135), the CD4 binding site (VRC01) and the V2-glycan (PG9) but not for the trimer-specific monoclonal antibodies PG16, PGT145 and CAP256-VRC26_08. When this soluble Env protein was tested in rabbits, AlhydroGel significantly enhanced soluble Env and V1V2 binding antibodies when compared to AddaVax. Finally, AlhydroGel resulted in significantly higher neutralization titres for a subtype C Tier 1A virus (MW965.26) and increased neutralization breadth to Tier 1A and 1B viruses. However, no autologous Tier 2 neutralisation was observed. These data suggest that adjuvant selection is critical for developing a successful vaccine and AlhydroGel should be further investigated. Additional purification of trimeric native-like CAP256 Env and/or priming with DNA or MVA might enhance the induction of neutralizing antibodies and possible Tier 2 HIV-1 neutralisation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Anti-HIV/metabolismo , HIV-1/metabolismo , Polissorbatos/farmacologia , Esqualeno/farmacologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/metabolismo , Células HEK293 , Anticorpos Anti-HIV/sangue , Humanos , Imunização
20.
Plant Biotechnol J ; 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890031

RESUMO

Plant molecular farming offers a cost-effective and scalable approach to the expression of recombinant proteins which has been proposed as an alternative to conventional production platforms for developing countries. In recent years, numerous proofs of concept have established that plants can produce biologically active recombinant proteins and immunologically relevant vaccine antigens that are comparable to those made in conventional expression systems. Driving many of these advances is the remarkable plasticity of the plant proteome which enables extensive engineering of the host cell, as well as the development of improved expression vectors facilitating higher levels of protein production. To date, the only plant-derived viral glycoprotein to be tested in humans is the influenza haemagglutinin which expresses at ~50 mg/kg. However, many other viral glycoproteins that have potential as vaccine immunogens only accumulate at low levels in planta. A critical consideration for the production of many of these proteins in heterologous expression systems is the complexity of post-translational modifications, such as control of folding, glycosylation and disulphide bridging, which is required to reproduce the native glycoprotein structure. In this review, we will address potential shortcomings of plant expression systems and discuss strategies to optimally exploit the technology for the production of immunologically relevant and structurally authentic glycoproteins for use as vaccine immunogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...