Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282933

RESUMO

Background COVID-19 vaccines with alternative strain compositions are needed to provide broad protection against newly emergent SARS-CoV-2 variants of concern. Methods We conducted a global Phase 3, multi-stage efficacy study (NCT04904549) among adults aged [≥]18 years. Participants were randomized 1:1 to receive two intramuscular injections 21 days apart of a bivalent SARS-CoV-2 recombinant protein vaccine with AS03-adjuvant (5 g of ancestral (D614) and 5 g of B.1.351 [beta] variant spike protein) or placebo. Symptomatic COVID-19 was defined as laboratory-confirmed COVID-19 with COVID-19-like illness (CLI) symptoms. The primary efficacy endpoint was the prevention of symptomatic COVID-19 [≥]14 days after the second injection. Results Between 19 Oct 2021 and 15 Feb 2022, 12,924 participants received [≥]1 study injection. 75% of participants were SARS-CoV-2 non-naive. 11,416 participants received both study injections (efficacy-evaluable population [vaccine, n=5,736; placebo, n=5,680]). Up to 15 March 2022, 121 symptomatic COVID-19 cases were reported (32 in the vaccine group and 89 in the placebo group) [≥]14 days after the second injection with a vaccine efficacy (VE) of 64.7% (95% confidence interval [CI] 46.6; 77.2%). VE was 75.1% (95% CI 56.3; 86.6%) in non-naive and 30.9% (95% CI -39.3; 66.7%) in naive participants. Viral genome sequencing identified the infecting strain in 68 cases (Omicron [BA.1 and BA.2 subvariants]: 63; Delta: 4; Omicron and Delta: 1). The vaccine was well-tolerated and had an acceptable safety profile. Conclusions A bivalent vaccine conferred heterologous protection against symptomatic infection with newly emergent Omicron (BA.1 and BA.2) in non-naive adults 18-59 years of age. ClinicalTrials.gov: NCT04904549

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282931

RESUMO

BackgroundBooster vaccines providing protection against emergent SARS-CoV-2 variants are needed. In an international phase 3 study, we evaluated booster vaccines containing prototype (D614) and/or Beta (B.1.351) variant recombinant spike proteins and AS03 adjuvant (CoV2 preS dTM-AS03). MethodsAdults, primed 4-10 months earlier with mRNA (BNT162b2, mRNA-1273]), adenovirus-vectored (Ad26.CoV2.S, ChAdOx1nCoV-19) or adjuvanted protein (CoV2 preS dTM-AS03 [D614]) vaccines and stratified by age (18-55 and [≥]56 years), were boosted with monovalent (MV) D614 (5g, n=1285), MV (B.1351) (5g, n=707) or bivalent (BiV) (2.5g D614 plus 2.5g B.1.351, n=625) CoV2 preS dTM-AS03. SARS-CoV-2-naive adults (controls, n=479) received a primary series (two injections, 21 days apart) of CoV2 preS dTM-AS03 containing 10g D614. Antibodies to D614G, B.1.351 and Omicron BA.2 and BA.1 variants were evaluated using validated pseudovirus (lentivirus) neutralization (PsVN) assay. D614G or B.1.351 PsVN titers 14 days (D15) post-booster were compared with pre-booster (D1) titers in BNT162b2-primed participants (18-55 years old) and controls (D36), for each booster formulation (co-primary objectives). Safety was evaluated throughout the trial. Results of a planned interim analysis are presented. ResultsAmong BNT162b2-primed adults (18-55 years old), PsVN titers against D614G or B.1.351 were significantly higher post-booster than anti-D614G titers post-primary vaccination in controls, for all booster formulations, with an anti-D614G GMT ratio (98.3% CI) of 2.16 (1.69; 2.75) for MV(D614), an anti-B.1.351 ratio of 1.96 (1.54; 2.50) for MV (B.1.351) and anti-D614G and anti-B.1.351 ratios of 2.34 (1.84; 2.96) and 1.39 (1.09; 1.77), respectively, for BiV. All booster formulations elicited cross-neutralizing antibodies against Omicron BA.2 across vaccine priming subgroups and against Omicron BA.1 (evaluated in BNT162b2-primed participants). Similar patterns in antibody responses were observed for participants aged [≥]56 years. No safety concerns were identified. ConclusionCoV2 preS dTM-AS03 boosters demonstrated acceptable safety and elicited robust neutralizing antibodies against multiple variants, regardless of priming vaccine. ClinicalTrials.govNCT04762680 FundingSanofi and federal funds from the Biomedical Advanced Research and Development Authority (BARDA), part of the office of the Administration for Strategic Preparedness and Response at the U.S. Department of Health and Human Services under Contract # HHSO100201600005I, and in collaboration with the U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense under Contract # W15QKN-16-9-1002.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269242

RESUMO

BackgroundSeveral COVID-19 vaccines are currently being deployed but supply constraints, concerns over durability of immune responses, solidifying vaccine hesitancy/resistance and vaccine efficacy in the face of emerging variants mean that new vaccines continue to be needed to fight the ongoing pandemic. The vaccine described here is an enveloped, coronavirus-like particle produced in plants (CoVLP) that displays the prefusion-stabilized spike (S) glycoprotein of SARS-CoV-2 (ancestral Wuhan strain) and is adjuvanted with AS03 (CoVLP+AS03). MethodsThis Phase 3 randomized, observer-blind, placebo-controlled trial was conducted at 85 centers in Argentina, Brazil, Canada, Mexico, the UK, and the USA. Adults [≥]18 years of age including those at high risk for COVID-19 complications were randomly assigned 1:1 to receive two intramuscular injections of CoVLP (3.75 g) adjuvanted with AS03 or placebo, 21 days apart. The primary efficacy endpoint was prevention of symptomatic ([≥] 1 symptom), PCR-confirmed SARS-CoV-2 infection with onset at least 7 days after the second injection and was triggered by the identification of [≥]160 virologically-confirmed cases. Tolerability and safety of CoVLP+AS03 were also determined. ResultsA total of 24,141 volunteers were randomly assigned 1:1 to receive vaccine or placebo (N= 12,074 and 12,067, respectively: median age 29, range 18 to 86 years). Overall, 83% received both doses. 14.8% were SARS-CoV-2 seropositive at baseline. Symptomatic SARS-CoV-2 infection was confirmed in 165 study participants in the intention to treat (ITT) set and 157 in the per-protocol population (PP) set. Of the 157 in the PP set, 118 COVID-19 cases were in the placebo group and 39 COVID-19 cases were in the CoVLP+AS03 group for an overall vaccine efficacy (VE) of 71.0% (95% confidence interval (CI) 58.6, 80.0). Moderate-to-severe COVID-19 occurred in 8 and 32 participants in the CoVLP+AS03 and placebo groups, respectively: VE 78.1% (95% CI: 53.9, 90.5) in the PP set overall and 84.5% (95% CI: 62.0, 94.7) in those seronegative at recruitment. To date, 100% of the sequenced strains (122/165 cases: 73.39%) were variants, dominated by Delta (45.9%) and Gamma (43.4%) strains. Vaccine efficacy by variant was 75.3% (95% CI 52.8, 87.9) against Delta and 88.6% (95% CI 74.6, 95.6) against Gamma. Cross-protection was also observed against Alpha, Lambda and Mu variants; although fewer cases were identified, all were in the placebo group. At diagnosis, viral loads in the CoVLP+AS03 breakthrough cases were >100-fold lower than in the placebo cases. Reactogenicity data for solicited adverse events (AEs) was analysed for a subset (N=4,136 in vaccine arm and N=3,683 for placebo) of participants. Reactogenicity was mostly mild to moderate, and transient, and occurred more frequently in the CoVLP+AS03 group. The safety analysis set used for unsolicited AE assessment comprised 24,076 participants who received at least one study injection: 12,036 received CoVLP+AS03 and 12,040 received placebo. All serious adverse events were assessed as unrelated, except two events reported in the same subject in the placebo group. No significant imbalance or safety concern was noted in medically attended AEs (MAAEs), adverse event of special interest (AESIs), AEs leading to withdrawal, deaths, or adverse events potentially associated with currently authorized vaccines. ConclusionsThe CoVLP+AS03 vaccine candidate conferred an efficacy of 71.0% in preventing symptomatic SARS-CoV-2 infection caused by a spectrum of variants. Vaccine efficacy of 78.1% was observed against moderate and severe disease, while variant-specific efficacy ranged from 75.3% to 100%. Markedly lower viral loads in the CoVLP+AS03 group at the time of diagnosis suggests a significant virologic impact of vaccination even in the breakthrough cases. CoVLP+AS03 vaccine candidate was well tolerated, and no safety concerns were identified during the study. If approved by regulators, this more traditional protein+adjuvant vaccine produced using the novel plant-based platform may be able to make an important contribution to the global struggle against the increasingly complex family of SARS-CoV-2 viruses (Funded by Medicago with grants from the governments of Quebec and Canada; NCT04636697).

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264302

RESUMO

BackgroundThis study evaluated the safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein candidate vaccine, CoV2 preS dTM. MethodsThis Phase 2, modified double-blind, parallel-group study (NCT04762680) was conducted in adults, including those at increased risk of severe COVID-19. Participants were randomised 1:1:1, stratified by age (18-59/[≥]60 years), rapid serodiagnostic test (positive/negative) and high-risk medical conditions (yes/no), to receive two injections (day [D]1 and D22) of 5g, 10g or 15g of CoV2 preS dTM antigen with fixed AS03 content. Interim safety and reactogenicity results (to D43) and neutralising antibodies (NAbs) against the D614G variant are presented (primary objectives). FindingsOf 722 participants enrolled and randomised between 24 February and 8 March 2021, 721 received [≥]1 injections (5g, n=240; 10g, n=239; 15g, n=242). Four participants reported unsolicited immediate adverse events (AEs), two were vaccine-related (investigator assessment). Five participants reported seven vaccine-related medically-attended AEs. No vaccine-related serious AEs and no AEs of special interest were reported. Solicited reactions (local and systemic) were reported at similar frequencies between study groups; these were mostly mild to moderate and transient, with higher frequency and intensity post-injection 2 than post-injection 1. In SARS-CoV-2 naive participants at D36, 96{middle dot}9%, 97.0% and 97{middle dot}6% of participants had [≥]4-fold-rise in NAb titres from baseline in the 5g-, 10g- and 15g-dose groups, respectively. NAb titres increased with antigen dose in younger (GMTs: 2954, 3951 and 5142 for 5g-, 10g- and 15g-dose groups) but not older adults (GMTs: 1628, 1393 and 1736, respectively). NAb titres in non-naive adults after one injection were higher than titres after two injections in naive adults. InterpretationTwo injections of CoV2 preS dTM-AS03 demonstrated acceptable safety and reactogenicity, and robust immunogenicity in SARS-CoV-2 naive and non-naive adults. These results informed antigen dose selection for progression to Phase 3 evaluation of primary and booster vaccination.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-461023

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that partly evade neutralizing antibodies has raised concerns of reduced vaccine effectiveness and increased infection. We previously demonstrated in preclinical models and in human clinical trials that our SARS-CoV-2 recombinant spike protein vaccine adjuvanted with AS03 (CoV2 preS dTM-AS03) elicits robust neutralizing antibody responses in naive subjects. Here, the objective was to document the potency of various booster vaccine formulations in macaques previously vaccinated with mRNA or protein subunit vaccine candidates. We show that one booster dose of AS03-adjuvanted CoV2 preS dTM, D614 (parental) or B.1.351 (Beta), in monovalent or bivalent (D614 + B.1.351) formulations, significantly boosted pre-existing neutralizing antibodies and elicited high and stable cross-neutralizing antibodies covering the four known SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) and, unexpectedly, SARS-CoV-1, in primed macaques. Interestingly, the non-adjuvanted CoV2 preS dTM B.1.351 vaccine formulation also significantly boosted and broadened the neutralizing antibody responses. Our findings show that these vaccine candidates used as a booster have the potential to offer cross-protection against a broad spectrum of variants. This has important implications for vaccine control of SARS-CoV-2 variants of concern and informs on the benefit of a booster with our vaccine candidates currently under evaluation in phase 2 and 3 clinical trials (NCT04762680 and NCT04904549).

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433390

RESUMO

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3x106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248611

RESUMO

BackgroundEffective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. CoV2 preS dTM is a stabilised pre-fusion S protein vaccine produced in a baculovirus expression system. We present interim safety and immunogenicity results of the first-in-human study of the CoV2 preS dTM vaccine with two different adjuvant formulations. MethodsThis Phase I/II, randomised, double-blind study (NCT04537208) is being conducted in healthy, SARS-CoV-2-seronegative adults in the USA. Participants were stratified by age (18-49 and [≥]50 years) and randomised to receive one (on Day[D]1) or two doses (D1, D22) of placebo or candidate vaccine, containing: low-dose (LD, effective dose 1.3 {micro}g) or high-dose (HD, 2.6 {micro}g) antigen with adjuvant AF03 (Sanofi Pasteur) or AS03 (GlaxoSmithKline); or unadjuvanted HD (18-49 years only). Safety was assessed up to D43. SARS-CoV-2 neutralising and binding antibody profiles were assessed in D1, D22 and D36 serum samples. FindingsThe interim safety analyses included 439/441 randomised participants. There were no related unsolicited immediate AEs, serious AEs, medically attended AEs classified as severe, or AE of special interest. More grade 3 solicited reactions were reported than expected after the second dose in the adjuvanted vaccine groups. Neutralising and binding antibody responses after two vaccine doses were higher in adjuvanted versus unadjuvanted groups, in AS03-versus AF03-adjuvanted groups, in HD versus LD groups, and in younger versus older age strata. InterpretationThe lower than expected immune responses, especially in the older age stratum, and the higher than anticipated reactogenicity post dose 2 were likely due to a higher than anticipated host cell protein content and lower than planned antigen dose in the clinical material. Further development of the AS03-adjuvanted candidate vaccine will focus on identifying the optimal antigen formulation and dose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...