Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104818, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182735

RESUMO

Encoded by ANK2, ankyrin-B (AnkB) is a multifunctional adapter protein critical for the expression and targeting of key cardiac ion channels, transporters, cytoskeletal-associated proteins, and signaling molecules. Mice deficient for AnkB expression are neonatal lethal, and mice heterozygous for AnkB expression display cardiac structural and electrical phenotypes. Human ANK2 loss-of-function variants are associated with diverse cardiac manifestations; however, human clinical 'AnkB syndrome' displays incomplete penetrance. To date, animal models for human arrhythmias have generally been knock-out or transgenic overexpression models and thus the direct impact of ANK2 variants on cardiac structure and function in vivo is not clearly defined. Here, we directly tested the relationship of a single human ANK2 disease-associated variant with cardiac phenotypes utilizing a novel in vivo animal model. At baseline, young AnkBp.E1458G+/+ mice lacked significant structural or electrical abnormalities. However, aged AnkBp.E1458G+/+ mice displayed both electrical and structural phenotypes at baseline including bradycardia and aberrant heart rate variability, structural remodeling, and fibrosis. Young and old AnkBp.E1458G+/+ mice displayed ventricular arrhythmias following acute (adrenergic) stress. In addition, young AnkBp.E1458G+/+ mice displayed structural remodeling following chronic (transverse aortic constriction) stress. Finally, AnkBp.E1458G+/+ myocytes harbored alterations in expression and/or localization of key AnkB-associated partners, consistent with the underlying disease mechanism. In summary, our findings illustrate the critical role of AnkB in in vivo cardiac function as well as the impact of single AnkB loss-of-function variants in vivo. However, our findings illustrate the contribution and in fact necessity of secondary factors (aging, adrenergic challenge, pressure-overload) to phenotype penetrance and severity.


Assuntos
Anquirinas , Miócitos Cardíacos , Animais , Humanos , Camundongos , Adrenérgicos/metabolismo , Anquirinas/metabolismo , Modelos Animais de Doenças , Canais Iônicos/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fenótipo , Envelhecimento/metabolismo
2.
J Appl Physiol (1985) ; 134(5): 1287-1299, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995910

RESUMO

Cardiac stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry (SOCE), is a known determinant of cardiomyocyte pathological growth in hypertrophic cardiomyopathy. We examined the role of STIM1 and SOCE in response to exercise-dependent physiological hypertrophy. Wild-type (WT) mice subjected to exercise training (WT-Ex) showed a significant increase in exercise capacity and heart weight compared with sedentary (WT-Sed) mice. Moreover, myocytes from WT-Ex hearts displayed an increase in length, but not width, compared with WT-Sed myocytes. Conversely, exercised cardiac-specific STIM1 knock-out mice (cSTIM1KO-Ex), although displaying significant increase in heart weight and cardiac dilation, evidenced no changes in myocyte size and displayed a decreased exercise capacity, impaired cardiac function, and premature death compared with sedentary cardiac-specific STIM1 knock-out mice (cSTIM1KO-Sed). Confocal Ca2+ imaging demonstrated enhanced SOCE in WT-Ex myocytes compared with WT-Sed myocytes with no measurable SOCE detected in cSTIM1KO myocytes. Exercise training induced a significant increase in cardiac phospho-Akt Ser473 in WT mice but not in cSTIM1KO mice. No differences were observed in phosphorylation of mammalian target of rapamycin (mTOR) and glycogen synthase kinase (GSK) in exercised versus sedentary cSTIM1KO mice hearts. cSTIM1KO-Sed mice showed increased basal MAPK phosphorylation compared with WT-Sed that was not altered by exercise training. Finally, histological analysis revealed exercise resulted in increased autophagy in cSTIM1KO but not in WT myocytes. Taken together, our results suggest that adaptive cardiac hypertrophy in response to exercise training involves STIM1-mediated SOCE. Our results demonstrate that STIM1 is involved in and essential for the myocyte longitudinal growth and mTOR activation in response to endurance exercise training.NEW & NOTEWORTHY Store-operated Ca2+ entry (SOCE) has been implicated in pathological cardiac hypertrophy; however, its role in physiological hypertrophy is unknown. Here we report that SOCE is also essential for physiological cardiac hypertrophy and functional adaptations in response to endurance exercise. These adaptations were associated with activation of AKT/mTOR pathway and curtailed cardiac autophagy and degeneration. Thus, SOCE is a common mechanism and an important bifurcation point for signaling paths involved in physiological and pathological hypertrophy.


Assuntos
Canais de Cálcio , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Canais de Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cardiomegalia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos Knockout , Cálcio/metabolismo , Sinalização do Cálcio , Mamíferos/metabolismo
3.
Acta Physiol (Oxf) ; 238(2): e13969, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971744

RESUMO

AIM: Cardiac alternans is a dynamical phenomenon linked to the genesis of severe arrhythmias and sudden cardiac death. It has been proposed that alternans is caused by alterations in Ca2+ handling by the sarcoplasmic reticulum (SR), in both the SR Ca2+ uptake and release processes. The hypertrophic myocardium is particularly prone to alternans, but the precise mechanisms underlying its increased vulnerability are not known. METHODS: Mechanical alternans (intact hearts) and Ca2+ alternans (cardiac myocytes) were studied in spontaneously hypertensive rats (SHR) during the first year of age after the onset of hypertension and compared with age-matched normotensive rats. Subcellular Ca2+ alternans, T-tubule organization, SR Ca2+ uptake, and Ca2+ release refractoriness were measured. RESULTS: The increased susceptibility of SHR to high-frequency-induced mechanical and Ca2+ alternans appeared when the hypertrophy developed, associated with an adverse remodeling of the T-tubule network (6 mo). At the subcellular level, Ca2+ discordant alternans was also observed. From 6 mo of age, SHR myocytes showed a prolongation of Ca2+ release refractoriness without alterations in the capacity of SR Ca2+ removal, measured by the frequency-dependent acceleration of relaxation. Sensitizing SR Ca2+ release channels (RyR2) by a low dose of caffeine or by an increase in extracellular Ca2+ concentration, shortened refractoriness of SR Ca2+ release, and reduced alternans in SHR hearts. CONCLUSIONS: The tuning of SR Ca2+ release refractoriness is a crucial target to prevent cardiac alternans in a hypertrophic myocardium with an adverse T-tubule remodeling.


Assuntos
Hipertensão , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Arritmias Cardíacas , Hipertensão/metabolismo , Ratos Endogâmicos SHR , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
4.
Eur J Pharmacol ; 914: 174665, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34861208

RESUMO

INTRODUCTION: The function of endoplasmic reticulum (ER), a Ca2+ storage compartment and site of protein folding, is altered by disruption of intracellular homeostasis. Misfolded proteins accumulated in the ER lead to ER stress (ERS), unfolded protein response (UPR) activation and ER Ca2+ loss. Myocardial stunning is a temporary contractile dysfunction, which occurs after brief ischemic periods with minimal or no cell death, being oxidative stress and Ca2+ overload potential underlying mechanisms. Myocardial stunning induces ERS response with negatively impact on the post-ischemic mechanical performance through an unknown mechanism. AIMS: In this study, we explored whether ER Ca2+ efflux through the translocon, a major Ca2+ leak channel, contributes to Ca2+ mishandling and the consequent contractile abnormalities of the stunned myocardium. METHODS: Mechanical performance, cytosolic Ca2+, UPR markers and oxidative state were evaluated in perfused rat/mouse hearts subjected to a brief ischemia followed by reperfusion (I/R) in absence or presence of the translocon inhibitor, emetine (1 µM), comparing its effects with those of the chaperones TUDCA (30 µM) and 4-PBA (3 mM). RESULTS: Emetine treatment precluded the I/R-induced increase in UPR signaling markers and improved the contractile recovery together with a remarkable attenuation in myocardial stiffness when compared to I/R hearts with no drug. This alleviation of I/R-induced mechanical abnormalities was more effective than that obtained with the chemical chaperones, TUDCA and 4-PBA. Moreover, emetine treatment produced a striking improvement in diastolic Ca2+ handling with a partial recovery of the I/R-induced oxidative stress. CONCLUSION: Blocking ER Ca2+ store depletion via translocon suppressed ER stress and improved mechanical performance and diastolic Ca2+ handling of stunned myocardium. Modulation of translocon permeability emerges as a therapeutic approach to face dysfunctional consequences of the I/R injury.


Assuntos
Cálcio/metabolismo , Emetina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Contração Miocárdica , Miocárdio Atordoado , Canais de Translocação SEC/antagonistas & inibidores , Resposta a Proteínas não Dobradas , Animais , Sinalização do Cálcio , Camundongos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miocárdio Atordoado/tratamento farmacológico , Miocárdio Atordoado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia
5.
Acta Physiol (Oxf) ; 228(2): e13358, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31385408

RESUMO

AIM: Myocardial ischaemia/reperfusion (I/R) produces structural and functional alterations depending on the duration of ischaemia. Brief ischaemia followed by reperfusion causes reversible contractile dysfunction (stunned heart) but long-lasting ischaemia followed by reperfusion can result in irreversible injury with cell death. Events during I/R can alter endoplasmic reticulum (ER) function leading to the accumulation of unfolded/misfolded proteins. The resulting ER stress induces activation of several signal transduction pathways, known as unfolded protein response (UPR). Experimental evidence shows that UPR contributes to cell death in irreversible I/R injury; however, there is still uncertainty for its occurrence in the stunned myocardium. This study investigated the ER stress response and its functional impact on the post-ischaemic cardiac performance of the stunned heart. METHODS: Perfused rat hearts were subjected to 20 minutes of ischaemia followed by 30 minutes of reperfusion. UPR markers were evaluated by qRT-PCR and western blot. Post-ischaemic mechanical recovery was measured in absence and presence of two chemical chaperones: tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). RESULTS: Analysis of mRNA and protein levels of various ER stress effectors demonstrated that different UPR signalling cascades, involving both pro-survival and pro-apoptotic pathways, are activated. Inhibition of the UPR with chemical chaperones improved the post-ischaemic recovery of cardiac mechanical function without affecting the I/R-induced increase in oxidative stress. CONCLUSION: Our results suggest that prevention of ER stress by chemical chaperones could be a therapeutic tool to limit deterioration of the contractile function in clinical settings in which the phenomenon of myocardial stunning is present.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio Atordoado/tratamento farmacológico , Miocárdio/metabolismo , Fenilbutiratos/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Colagogos e Coleréticos/farmacologia , Modelos Animais de Doenças , Proteínas de Choque Térmico/metabolismo , Masculino , Miocárdio Atordoado/etiologia , Miocárdio Atordoado/patologia , Miocárdio/patologia , Ratos , Ratos Wistar , Transdução de Sinais , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...