Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252427

RESUMO

BackgroundRapid antigen lateral flow devices (LFDs) are set to become a cornerstone of SARS-CoV-2 mass community testing. However, their reduced sensitivity compared to PCR has raised questions of how well they identify infectious cases. Understanding their capabilities and limitations is therefore essential for successful implementation. To address this, we evaluated six commercial LFDs on the same collection of clinical samples and assessed their correlation with infectious virus culture and cycle threshold (Ct) values. MethodsA head-to-head comparison of specificities and sensitivities was performed on six commercial rapid antigen tests using combined nasal/oropharyngeal swabs, and their limits of detection determined using viral plaque forming units (PFU). Three of the LFDs were selected for a further study, correlating antigen test result with RT-PCR Ct values and positive viral culture in Vero-E6 cells. This included sequential swabs and matched serum samples obtained from four infected individuals with varying disease severities. Detection of antibodies was performed using an IgG/IgM Rapid Test Cassette, and neutralising antibodies by infectious virus assay. Finally, the sensitivities of selected rapid antigen LFTs were assessed in swabs with confirmed B.1.1.7 variant, currently the dominant genotype in the UK. FindingsMost of the rapid antigen LFDs showed a high specificity (>98%), and accurately detected 50 PFU/test (equivalent N1 Ct of 23.7 or RNA copy number of 3x106/ml). Sensitivities of the LFDs performed on clinical samples ranged from 65 to 89%. These sensitivities increased in most tests to over 90% for samples with Cts lower than 25. Positive virus culture was achieved for 57 out of 141 samples, with 80% of the positive cultures from swabs with Cts lower than 23. Importantly, sensitivity of the LFDs increased to over 95% when compared with the detection of infectious virus alone, irrespective of Ct. Longitudinal studies of PCR-positive samples showed that most of the tests identified all infectious samples as positive, but differences in test sensitivities can lead to missed cases in the absence of repeated testing. Finally, test performance was not impacted when re-assessed against swabs positive for the dominant UK variant B.1.1.7. InterpretationIn this comprehensive comparison of antigen LFD and virus infectivity, we demonstrate a clear relationship between Ct values, quantitative culture of infectious virus and antigen LFD positivity in clinical samples. Our data support regular testing of target groups using LFDs to supplement the current PCR testing capacity, to rapidly identify infected individuals in situations where they would otherwise go undetected. FundingKings Together Rapid COVID-19, Medical Research Council, Wellcome Trust, Huo Family Foundation.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20162701

RESUMO

BackgroundUnderstanding of the true asymptomatic rate of infection of SARS-CoV-2 is currently limited, as is understanding of the population-based seroprevalence after the first wave of COVID-19 within the UK. The majority of data thus far come from hospitalised patients, with little focus on general population cases, or their symptoms. MethodsWe undertook enzyme linked immunosorbent assay characterisation of IgM and IgG responses against SARS-CoV-2 spike glycoprotein and nucleocapsid protein of 431 unselected general-population participants of the TwinsUK cohort from South-East England, aged 19-86 (median age 48; 85% female). 382 participants completed prospective logging of 14 COVID-19 related symptoms via the COVID Symptom Study App, allowing consideration of serology alongside individual symptoms, and a predictive algorithm for estimated COVID-19 previously modelled on PCR positive individuals from a dataset of over 2 million. FindingsWe demonstrated a seroprevalence of 12% (51participants of 431). Of 48 seropositive individuals with full symptom data, nine (19%) were fully asymptomatic, and 16 (27%) were asymptomatic for core COVID-19 symptoms: fever, cough or anosmia. Specificity of anosmia for seropositivity was 95%, compared to 88% for fever cough and anosmia combined. 34 individuals in the cohort were predicted to be Covid-19 positive using the App algorithm, and of those, 18 (52%) were seropositive. InterpretationSeroprevalence amongst adults from London and South-East England was 12%, and 19% of seropositive individuals with prospective symptom logging were fully asymptomatic throughout the study. Anosmia demonstrated the highest symptom specificity for SARS-CoV-2 antibody response. FundingNIHR BRC, CDRF, ZOE global LTD, RST-UKRI/MRC

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20074351

RESUMO

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna(R) Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...