Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 9(1): 2, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161208

RESUMO

ß-cells are a type of endocrine cell found in pancreatic islets that synthesize, store and release insulin. In type 1 diabetes (T1D), T-cells of the immune system selectively destroy the insulin-producing ß-cells. Destruction of these cells leads to a lifelong dependence on exogenous insulin administration for survival. Consequently, there is an urgent need to identify novel therapies that stimulate ß-cell growth and induce ß-cell function. We and others have shown that pancreatic ductal progenitor cells are a promising source for regenerating ß-cells for T1D owing to their inherent differentiation capacity. Default transcriptional suppression is refractory to exocrine reaction and tightly controls the regenerative potential by the EZH2 methyltransferase. In the present study, we show that transient stimulation of exocrine cells, derived from juvenile and adult T1D donors to the FDA-approved EZH2 inhibitors GSK126 and Tazemetostat (Taz) influence a phenotypic shift towards a ß-like cell identity. The transition from repressed to permissive chromatin states are dependent on bivalent H3K27me3 and H3K4me3 chromatin modification. Targeting EZH2 is fundamental to ß-cell regenerative potential. Reprogrammed pancreatic ductal cells exhibit insulin production and secretion in response to a physiological glucose challenge ex vivo. These pre-clinical studies underscore the potential of small molecule inhibitors as novel modulators of ductal progenitor differentiation and a promising new approach for the restoration of ß-like cell function.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
2.
Signal Transduct Target Ther ; 7(1): 248, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864094

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that selectively destroys insulin-producing ß-cells in the pancreas. An unmet need in diabetes management, current therapy is focussed on transplantation. While the reprogramming of progenitor cells into functional insulin-producing ß-cells has also been proposed this remains controversial and poorly understood. The challenge is determining why default transcriptional suppression is refractory to exocrine reactivation. After the death of a 13-year-old girl with established insulin-dependent T1D, pancreatic cells were harvested in an effort to restore and understand exocrine competence. The pancreas showed classic silencing of ß-cell progenitor genes with barely detectable insulin (Ins) transcript. GSK126, a highly selective inhibitor of EZH2 methyltransferase activity influenced H3K27me3 chromatin content and transcriptional control resulting in the expression of core ß-cell markers and ductal progenitor genes. GSK126 also reinstated Ins gene expression despite absolute ß-cell destruction. These studies show the refractory nature of chromatin characterises exocrine suppression influencing ß-cell plasticity. Additional regeneration studies are warranted to determine if the approach of this n-of-1 study generalises to a broader T1D population.


Assuntos
Diabetes Mellitus Tipo 1 , Pâncreas Exócrino , Adolescente , Cromatina , Diabetes Mellitus Tipo 1/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Insulina/genética , Insulina/metabolismo , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 842937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370948

RESUMO

We present a case of an obese 22-year-old man with activating GCK variant who had neonatal hypoglycemia, re-emerging with hypoglycemia later in life. We investigated him for asymptomatic hypoglycemia with a family history of hypoglycemia. Genetic testing yielded a novel GCK missense class 3 variant that was subsequently found in his mother, sister and nephew and reclassified as a class 4 likely pathogenic variant. Glucokinase enables phosphorylation of glucose, the rate-limiting step of glycolysis in the liver and pancreatic ß cells. It plays a crucial role in the regulation of insulin secretion. Inactivating variants in GCK cause hyperglycemia and activating variants cause hypoglycemia. Spleen-preserving distal pancreatectomy revealed diffuse hyperplastic islets, nuclear pleomorphism and periductular islets. Glucose stimulated insulin secretion revealed increased insulin secretion in response to glucose. Cytoplasmic calcium, which triggers exocytosis of insulin-containing granules, revealed normal basal but increased glucose-stimulated level. Unbiased gene expression analysis using 10X single cell sequencing revealed upregulated INS and CKB genes and downregulated DLK1 and NPY genes in ß-cells. Further studies are required to see if alteration in expression of these genes plays a role in the metabolic and histological phenotype associated with glucokinase pathogenic variant. There were more large islets in the patient's pancreas than in control subjects but there was no difference in the proportion of ß cells in the islets. His hypoglycemia was persistent after pancreatectomy, was refractory to diazoxide and improved with pasireotide. This case highlights the variable phenotype of GCK mutations. In-depth molecular analyses in the islets have revealed possible mechanisms for hyperplastic islets and insulin hypersecretion.


Assuntos
Glucoquinase , Hipoglicemia , Adulto , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose , Humanos , Hipoglicemia/genética , Insulina/metabolismo , Secreção de Insulina , Masculino
4.
Cardiovasc Res ; 117(3): 918-929, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32251516

RESUMO

AIMS: To establish pre-clinical proof of concept that sustained subcutaneous delivery of the secretome of human cardiac stem cells (CSCs) can be achieved in vivo to produce significant cardioreparative outcomes in the setting of myocardial infarction. METHODS AND RESULTS: Rats were subjected to permanent ligation of left anterior descending coronary artery and randomized to receive subcutaneous implantation of TheraCyte devices containing either culture media as control or 1 × 106 human W8B2+ CSCs, immediately following myocardial ischaemia. At 4 weeks following myocardial infarction, rats treated with W8B2+ CSCs encapsulated within the TheraCyte device showed preserved left ventricular ejection fraction. The preservation of cardiac function was accompanied by reduced fibrotic scar tissue, interstitial fibrosis, cardiomyocyte hypertrophy, as well as increased myocardial vascular density. Histological analysis of the TheraCyte devices harvested at 4 weeks post-implantation demonstrated survival of human W8B2+ CSCs within the devices, and the outer membrane was highly vascularized by host blood vessels. Using CSCs expressing plasma membrane reporters, extracellular vesicles of W8B2+ CSCs were found to be transferred to the heart and other organs at 4 weeks post-implantation. Furthermore, mass spectrometry-based proteomic profiling of extracellular vesicles of W8B2+ CSCs identified proteins implicated in inflammation, immunoregulation, cell survival, angiogenesis, as well as tissue remodelling and fibrosis that could mediate the cardioreparative effects of secretome of human W8B2+ CSCs. CONCLUSIONS: Subcutaneous implantation of TheraCyte devices encapsulating human W8B2+ CSCs attenuated adverse cardiac remodelling and preserved cardiac function following myocardial infarction. The TheraCyte device can be employed to deliver stem cells in a minimally invasive manner for effective secretome-based cardiac therapy.


Assuntos
Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Proteoma , Regeneração , Secretoma , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Antígenos de Superfície/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Neovascularização Fisiológica , Proteômica , Ratos Nus , Transplante de Células-Tronco/instrumentação , Fatores de Tempo
5.
PLoS One ; 14(12): e0225021, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31821343

RESUMO

Type 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades. However, humanized mouse models are highly sought after because they offer both the experimental tractability of a mouse model and the clinical relevance of human-based research. Autoimmune T-cell responses against insulin, and its precursor proinsulin, play central roles in the autoimmune responses against pancreatic beta cells in both humans and NOD mice. As a first step towards developing a murine model of the human autoimmune response against pancreatic beta cells we set out to replace the murine insulin 1 gene (Ins1) with the human insulin gene (Ins) using CRISPR/Cas9. Here we describe a NOD mouse strain that expresses human insulin in place of murine insulin 1, referred to as HuPI. HuPI mice express human insulin, and C-peptide, in their serum and pancreata and have normal glucose tolerance. Compared with wild type NOD mice, the incidence of diabetes is much lower in HuPI mice. Only 15-20% of HuPI mice developed diabetes after 300 days, compared to more than 60% of unmodified NOD mice. Immune-cell infiltration into the pancreatic islets of HuPI mice was not detectable at 100 days but was clearly evident by 300 days. This work highlights the feasibility of using CRISPR/Cas9 to create mouse models of human diseases that express proteins pivotal to the human disease. Furthermore, it reveals that even subtle changes in proinsulin protect NOD mice from diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/metabolismo , Insulina/genética , Animais , Sistemas CRISPR-Cas , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Pâncreas/metabolismo
6.
Cell Transplant ; 21(1): 49-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21535910

RESUMO

Human islets are subjected to a number of stresses before and during their isolation that may influence their survival and engraftment after transplantation. Apoptosis is likely to be activated in response to these stresses. Apoptosis due to intrinsic stresses is regulated by pro- and antiapoptotic members of the Bcl-2 family. While the role of the Bcl-2 family in apoptosis of rodent islets is becoming increasingly understood, little is known about which of these molecules are expressed or required for apoptosis of human islets. This study investigated the expression of the Bcl-2 family of molecules in isolated human islets. RNA and protein lysates were extracted from human islets immediately postisolation. At the same time, standard quality control assays including viability staining and ß-cell content were performed on each islet preparation. Microarrays, RT-PCR, and Western blotting were performed on islet RNA and protein. The prosurvival molecules Bcl-xl and Mcl-1, but not Bcl-2, were highly expressed. The multidomain proapoptotic effector molecule Bax was expressed at higher levels than Bak. Proapoptotic BH3-only molecules were expressed at low levels, with Bid being the most abundant. The proapoptotic molecules BNIP3, BNIP3L, and Beclin-1 were all highly expressed, indicating exposure of islets to oxygen and nutrient deprivation during isolation. Our data provide a comprehensive analysis of expression levels of pro- and antiapoptotic Bcl-2 family members in isolated human islets. Knowledge of which molecules are expressed will guide future research to understand the apoptotic pathways activated during isolation or after transplantation. This is crucial for the design of methods to achieve improved transplantation outcomes.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Beclina-1 , Separação Celular , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Proteínas de Membrana/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas/metabolismo , Estresse Fisiológico , Proteínas Supressoras de Tumor/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
7.
J Immunol ; 187(4): 1702-12, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21734073

RESUMO

TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, these mice were crossed to ß cell-specific, highly diabetogenic TCR transgenic I-A(g7)-restricted NOD4.1 mice and Kd-restricted NOD8.3 mice. TNFR1-deficient NOD4.1 and NOD8.3 mice were protected from diabetes and had significantly less insulitis compared with wild type NOD4.1 and NOD8.3 controls. Diabetic NOD4.1 mice rejected TNFR1-deficient islet grafts as efficiently as control islets, confirming that TNFR1 signaling is not directly required for ß cell destruction. Flow cytometric analysis showed a significant increase in the number of CD4(+)CD25(+)Foxp3(+) T regulatory cells in TNFR1-deficient mice. TNFR1-deficient T regulatory cells were functionally better at suppressing effector cells than were wild type T regulatory cells both in vitro and in vivo. This study suggests that blocking TNF signaling may be beneficial in increasing the function of T regulatory cells and suppression of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Diabetes Mellitus Tipo 1/genética , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Células Secretoras de Insulina/transplante , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/genética , Transplante Homólogo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
8.
J Immunol ; 180(7): 4458-64, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18354167

RESUMO

T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP) induce diabetes in nonobese diabetic (NOD) mice. TCR transgenic mice with CD8(+) T cells specific for IGRP(206-214) (NOD8.3 mice) develop accelerated diabetes that requires CD4(+) T cell help. We previously showed that immune responses against proinsulin are necessary for IGRP(206-214)-specific CD8(+) T cells to expand. In this study, we show that diabetes development is dramatically reduced in NOD8.3 mice crossed to NOD mice tolerant to proinsulin (NOD-PI mice). This indicates that immunity to proinsulin is even required in the great majority of NOD8.3 mice that have a pre-existing repertoire of IGRP(206-214)-specific cells. However, protection from diabetes could be overcome by inducing islet inflammation either by a single dose of streptozotocin or anti-CD40 agonist Ab treatment. This suggests that islet inflammation can substitute for proinsulin-specific CD4(+) T cell help to activate IGRP(206-214)-specific T cells.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Glucose-6-Fosfatase/farmacologia , Ilhotas Pancreáticas/enzimologia , Proinsulina/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Apresentação de Antígeno/imunologia , Autoimunidade/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/prevenção & controle , Glucose-6-Fosfatase/metabolismo , Tolerância Imunológica/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T/genética
9.
Diabetes ; 55(9): 2412-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16936188

RESUMO

Cytotoxic T-cells are the major mediators of beta-cell destruction in type 1 diabetes, but the molecular mechanisms are not definitively established. We have examined the contribution of perforin and Fas ligand to beta-cell destruction using islet-specific CD8(+) T-cells from T-cell receptor transgenic NOD8.3 mice. NOD8.3 T-cells killed Fas-deficient islets in vitro and in vivo. Perforin-deficient NOD8.3 T-cells were able to destroy wild-type but not Fas-deficient islets in vitro. These results imply that NOD8.3 T-cells use both pathways and that Fas is required for beta-cell killing only when perforin is missing. Consistent with this theory, transgenic NOD8.3 mice with beta-cells that do not respond to Fas ligation were not protected from diabetes. We next investigated the mechanism of protection provided by overexpression of suppressor of cytokine signaling-1 (SOCS-1) in beta-cells of NOD8.3 mice. SOCS-1 islets remained intact when grafted into NOD8.3 mice and were less efficiently killed in vitro. However, addition of exogenous peptide rendered SOCS-1 islets susceptible to 8.3 T-cell-mediated lysis. Therefore, NOD8.3 T-cells use both perforin and Fas pathways to kill beta-cells and the surprising blockade of NOD8.3 T-cell-mediated beta-cell death by SOCS-1 overexpression may be due in part to reduced target cell recognition.


Assuntos
Células Secretoras de Insulina/citologia , Glicoproteínas de Membrana/fisiologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Linfócitos T Citotóxicos/fisiologia , Receptor fas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos T CD8-Positivos/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Proteína de Domínio de Morte Associada a Fas , Glucose-6-Fosfatase/fisiologia , Transplante das Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Perforina , Proteínas Citotóxicas Formadoras de Poros , Proteínas/fisiologia , Proteína 1 Supressora da Sinalização de Citocina
10.
Int Immunol ; 18(6): 837-46, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16574667

RESUMO

Direct interaction between auto-reactive CTL and specific peptide-MHC class I complexes on pancreatic beta cells is critical in mediating beta cell destruction in type I diabetes. We used mice with genetic modifications in three major pathways used by CTL, perforin, Fas and pro-inflammatory cytokines to assess the relative contribution of these mechanisms to beta cell death. In vitro-activated ovalbumin (OVA)-specific CTL, from OT-I TCR-transgenic mice, specifically killed transgenic beta cells expressing OVA (from RIP-mOVA mice) in a 16-h cytotoxicity assay. Perforin-deficient CTL had a reduced ability to kill OVA-expressing islets in vitro (22.1 +/- 3.8%) compared with wild-type CTL (71.4 +/- 4.6%). Fas-deficient islets were only slightly protected from wild-type CTL but were completely protected from the residual killing observed with perforin-deficient CTL. Residual cytotoxicity in perforin-deficient CTL was also prevented by overexpression of SOCS-1, which blocks multiple cytokine signaling pathways. It was also prevented by pre-incubation with anti-tumor necrosis factor-alpha (anti-TNFalpha) antibody or by blocking IFNgamma responsiveness through expressing a dominant negative IFNgamma receptor. Perforin-deficient CTL produced IFNgamma and TNFalpha that was shown to directly induce islet Fas expression during the assays. This suggests that Fas-deficiency, SOCS-1 overexpression and blockade of IFNgamma and TNFalpha all protect beta cells from residual cytotoxicity of perforin-deficient CTL by blocking Fas upregulation. These findings indicate that wild-type CTL destroy antigen-expressing islets via a perforin-dependent mechanism. However, in the absence of perforin, the Fas/FasL pathway provides an alternative mechanism dependent on islet cell Fas upregulation by cytokines IFNgamma and TNFalpha.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Interferon gama/imunologia , Glicoproteínas de Membrana/imunologia , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Receptor fas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Autoanticorpos/imunologia , Proteínas de Transporte/imunologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Proteína Ligante Fas , Genes MHC Classe I/imunologia , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Transgênicos , Peptídeos/imunologia , Perforina , Proteínas Citotóxicas Formadoras de Poros , Receptores de Interferon/imunologia , Proteínas Repressoras/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/imunologia , Fatores de Necrose Tumoral , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Receptor de Interferon gama
11.
Immunol Cell Biol ; 84(1): 20-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16277639

RESUMO

Pro-inflammatory cytokines have been implicated in the death of pancreatic beta cells leading to type 1 diabetes. NIT-1 cells are an insulinoma cell line derived from mice expressing the SV40 large T antigen. These cells are a useful tool in analysis of beta cell death. NIT-1 cells are highly susceptible to caspase-dependent apoptosis induced by TNF-alpha alone. Primary islets are not susceptible to cell death induced by TNF-alpha alone; however, they are killed by TNF-alpha and IFN-gamma in a nitric oxide-dependent manner. We examined signal transduction in NIT-1 cells in response to cytokines to determine the mechanism for TNF-alpha-induced apoptosis. We found that NIT-1 cells are defective in the activation of nuclear factor-kappaB (NFkappaB) as a result of functionally deficient RelA activity, because overexpression of RelA protected NIT-1 cells from apoptosis. TNF-alpha also did not induce phosphorylation of c-Jun N-terminal kinase in NIT-1 cells. Together, these defects prevent expression of anti-apoptotic genes in NIT-1 cells and make them susceptible to TNF-alpha. To determine whether similar defects in primary beta cells would induce the same effect, we examined TNF-alpha-induced apoptosis in islets isolated from mice deficient in NFkappaB p50. These islets were as susceptible as wild-type islets to TNF-alpha and IFN-gamma-induced cell death. In contrast to wild-type islets, cell death was not prevented by inhibition of nitric oxide in p50-deficient islets. Blocking NFkappaB has been proposed as a mechanism for protection of beta cells from cytokine-induced cell death in vivo. Our results suggest that this would make beta cells equally or more sensitive to cytokines.


Assuntos
Citocinas/farmacologia , Citocinas/fisiologia , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Animais , Morte Celular , Linhagem Celular , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/fisiologia , Células NIH 3T3 , Proteínas Recombinantes , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...