Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Viruses ; 14(11)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36366567

RESUMO

Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Humanos , Animais , Camundongos , Vacinas Virais/efeitos adversos , Vacinas Atenuadas/efeitos adversos , África
3.
Viruses ; 14(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36016399

RESUMO

OBJECTIVE: There is extensive evidence that SARS-CoV-2 replicates in the gastrointestinal tract. However, the infectivity of virions in feces is poorly documented. Although the primary mode of transmission is airborne, the risk of transmission from contaminated feces remains to be assessed. DESIGN: The persistence of SARS-CoV-2 (infectivity and RNA) in human and animal feces was evaluated by virus isolation on cell culture and RT-qPCR, respectively. The exposure of golden Syrian hamsters to experimentally contaminated feces through intranasal inoculation has also been tested to assess the fecal-oral transmission route. RESULTS: For periods that are compatible with average intestinal transit, the SARS-CoV-2 genome was noticeably stable in human and animal feces, contrary to the virus infectivity that was reduced in a time- and temperature-dependent manner. In human stools, this reduction was variable depending on the donors. Viral RNA was excreted in the feces of infected hamsters, but exposure of naïve hamsters to feces of infected animals did not lead to any productive infection. Conversely, hamsters could be experimentally infected following exposure to spiked fresh feces. CONCLUSION: Infection following exposure to naturally contaminated feces has been suspected but has not been established so far. The present work demonstrates that SARS-CoV-2 rapidly lost infectivity in spiked or naturally infected feces. Although the possibility of persistent viral particles in human or animal feces cannot be fully ruled out, SARS-CoV-2 transmission after exposure to contaminated feces is unlikely.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Fezes , Humanos , Mesocricetus , RNA Viral
4.
BMC Vet Res ; 18(1): 64, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120506

RESUMO

BACKGROUND: Brucellosis, Q fever and Rift Valley fever are considered as Neglected Zoonotic Diseases (NZDs) leading to socioeconomic losses in livestock globally, and particularly in developing countries of Africa where they are under-reported. In this study, we evaluated the seroprevalence of these 3 zoonotic diseases in domestic ruminants in Guinea from 2017 to 2019. A total of 1357 sera, sampled from 463 cattle, 408 goats and 486 sheep, were collected in 17 Guinean prefectures and analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS: Cattle was the species with highest seroprevalence (5 to 20-fold higher than in small ruminants) for the three diseases. The seroprevalence of brucellosis, mostly focused in Western Guinea, was 11.0% (51 of 463) in cattle, 0.4% (2 in 486) in sheep while no specific antibodies were found in goats. Q fever, widespread across the country, was the most frequently detected zoonosis with a mean seroprevalence of 20.5% (95 in 463), 4.4% (18 in 408) and 2.3% (11 in 486) in cattle, goats and sheep, respectively. The mean seroprevalence of RVF was 16.4% (76 in 463) in cattle, 1.0% (4 in 408) in goats and 1.0% (5 in 486) in sheep. Among the samples 19.3% were seropositive for at least one of the three NZDs, 2.5% showed specific antibodies against at least two pathogens and 4 cattle (0.8%) were seropositive for all three pathogens. In cattle, adults over 3-years old and females presented a higher antibody seroprevalence for the three diseases, in congruence with putative exposure risk. CONCLUSIONS: This study confirms the circulation of these three zoonotic pathogens in Guinea and highlights the need for implementing a syndromic surveillance of ruminant abortions by the Guinean veterinary authorities as well as for the screening of the human population at risk (veterinarians, breeders, slaughterers) in a One Health perspective.


Assuntos
Brucelose , Doenças das Cabras , Febre Q , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Aborto Animal , Animais , Brucelose/epidemiologia , Brucelose/veterinária , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças das Cabras/epidemiologia , Cabras , Guiné , Gravidez , Febre Q/epidemiologia , Febre Q/veterinária , Ruminantes , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologia
5.
Open Vet J ; 11(3): 337-341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722193

RESUMO

Background: Rift Valley fever (RVF) is an infectious zoonotic disease infecting, mainly, domestic ruminants and causing significant economic and public health problems. RVF is a vector-borne disease transmitted by mosquitoes. Aim: In this work, we tried to seek any RVF virus circulation in Tunisia. Methods: Thus, we investigated 1,723 sera from different parts of Tunisia, collected in 2009 and 2013-2015 from sheep, goats, cattle, and dromedaries. All sera were assessed using enzyme-linked immunosorbent assay techniques. Results: Eighty-seven sera were detected positive and 11 doubtful. All of them were investigated by the virus-neutralization technique (VNT), which confirmed the positivity of three sera. Conclusion: This is the first case of RVF seropositive confirmed by the VNT in Tunisian ruminants. Such a result was expected considering the climate, entomology, and geographic location of the country. Further investigations must enhance our findings to understand the RVF epidemiologic situation better and implement risk-based surveillance programs and effective control strategies.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Febre do Vale de Rift , Doenças dos Ovinos , Animais , Camelus , Bovinos , Doenças dos Bovinos/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/epidemiologia , Cabras , Febre do Vale de Rift/epidemiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Tunísia/epidemiologia
6.
Pathogens ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578197

RESUMO

In Europe, Puumala virus (PUUV) transmitted by the bank vole (Myodes glareolus) is the causative agent of nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome. In France, very little is known about the spatial and temporal variability of the virus circulating within bank vole populations. The present study involved monitoring of bank vole population dynamics and PUUV microdiversity over a ten-year period (2000-2009) in two forests of the Ardennes region: Elan and Croix-Scaille. Ardennes region is characterised by different environmental conditions associated with different NE epidemiology. Bank vole density and population parameters were estimated using the capture/marking/recapture method, and blood samples were collected to monitor the overall seroprevalence of PUUV in rodent populations. Phylogenetic analyses of fifty-five sequences were performed to illustrate the genetic diversity of PUUV variants between forests. The pattern of the two forests differed clearly. In the Elan forest, the rodent survival was higher, and this limited turn-over resulted in a lower seroprevalence and diversity of PUUV sequences than in the Croix-Scaille forest. Uncovering the links between host dynamics and virus microevolution is improving our understanding of PUUV distribution in rodents and the NE risk.

7.
Pathogens ; 10(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809526

RESUMO

Puumala orthohantavirus (PUUV) causes a mild form of haemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE), regularly diagnosed in Europe. France represents the western frontier of the expansion of NE in Europe with two distinct areas: an endemic area (north-eastern France) where PUUV circulates in rodent populations, with the detection of many human NE cases, and a non-endemic area (south-western France) where the virus is not detected, with only a few human cases being reported. In this study, we describe the different stages of the isolation of two PUUV strains from two distinct French geographical areas: Ardennes (endemic area) and Loiret (non-endemic area). To isolate PUUV efficiently, we selected wild bank voles (Myodes glareolus, the specific reservoir of PUUV) captured in these areas and that were seronegative for anti-PUUV IgG (ELISA) but showed a non-negligible viral RNA load in their lung tissue (qRT-PCR). With this study design, we were able to cultivate and maintain these two strains in Vero E6 cells and also propagate both strains in immunologically neutral bank voles efficiently and rapidly. High-throughput and Sanger sequencing results provided a better assessment of the impact of isolation methods on viral diversity.

8.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33612147

RESUMO

Understanding the pathogenesis of the SARS-CoV-2 infection is key to developing preventive and therapeutic strategies against COVID-19, in the case of severe illness but also when the disease is mild. The use of appropriate experimental animal models remains central in the in vivo exploration of the physiopathology of infection and antiviral strategies. This study describes SARS-CoV-2 intranasal infection in ferrets and hamsters with low doses of low-passage SARS-CoV-2 clinical French isolate UCN19, describing infection levels, excretion, immune responses and pathological patterns in both animal species. Individual infection with 103 p.f.u. SARS-CoV-2 induced a more severe disease in hamsters than in ferrets. Viral RNA was detected in the lungs of hamsters but not of ferrets and in the brain (olfactory bulb and/or medulla oblongata) of both species. Overall, the clinical disease remained mild, with serological responses detected from 7 days and 10 days post-inoculation in hamsters and ferrets respectively. The virus became undetectable and pathology resolved within 14 days. The kinetics and levels of infection can be used in ferrets and hamsters as experimental models for understanding the pathogenicity of SARS-CoV-2, and testing the protective effect of drugs.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Furões , Animais , Encéfalo/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , Progressão da Doença , Imunoglobulina G/imunologia , Pulmão/patologia , Pulmão/virologia , Nariz , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , Carga Viral/genética
9.
Pathogens ; 9(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993044

RESUMO

In Europe, Puumala virus (PUUV) is responsible for nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). Despite the presence of its reservoir, the bank vole, on most of French territory, the geographic distribution of NE cases is heterogeneous and NE endemic and non-endemic areas have been reported. In this study we analyzed whether bank vole-PUUV interactions could partly shape these epidemiological differences. We performed crossed-experimental infections using wild bank voles from French endemic (Ardennes) and non-endemic (Loiret) areas and two French PUUV strains isolated from these areas. The serological response and dynamics of PUUV infection were compared between the four cross-infection combinations. Due to logistical constraints, this study was based on a small number of animals. Based on this experimental design, we saw a stronger serological response and presence of PUUV in excretory organs (bladder) in bank voles infected with the PUUV endemic strain. Moreover, the within-host viral diversity in excretory organs seemed to be higher than in other non-excretory organs for the NE endemic cross-infection but not for the NE non-endemic cross-infection. Despite the small number of rodents included, our results showed that genetically different PUUV strains and in a lesser extent their interaction with sympatric bank voles, could affect virus replication and diversity. This could impact PUUV excretion/transmission between rodents and to humans and in turn at least partly shape NE epidemiology in France.

10.
Pathogens ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882953

RESUMO

Puumala virus (PUUV) in Europe causes nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). The incidence of NE is highly heterogeneous spatially, whereas the geographic distribution of the wild reservoir of PUUV, the bank vole, is essentially homogeneous. Our understanding of the processes driving this heterogeneity remains incomplete due to gaps in knowledge. Little is known about the current distribution and genetic variation of PUUV in the areas outside the well-identified zones of NE endemicity. We trapped bank voles in four forests in French regions in which NE is considered non-endemic, but sporadic NE cases have been reported recently. We tested bank voles for anti-PUUV IgG and characterized the S segment sequences of PUUV from seropositive animals. Phylogenetic analyses revealed specific amino-acid signatures and genetic differences between PUUV circulating in non-endemic and nearby NE-endemic areas. We also showed, in temporal surveys, that the amino-acid sequences of PUUV had undergone fewer recent changes in areas non-endemic for NE than in endemic areas. The evolutionary history of the current French PUUV clusters was investigated by phylogeographic approaches, and the results were considered in the context of the history of French forests. Our findings highlight the need to monitor the circulation and genetics of PUUV in a larger array of bank vole populations, to improve our understanding of the risk of NE.

11.
Brain Behav Immun ; 89: 579-586, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629042

RESUMO

Anosmia is one of the most prevalent symptoms of SARS-CoV-2 infection during the COVID-19 pandemic. However, the cellular mechanism behind the sudden loss of smell has not yet been investigated. The initial step of odour detection takes place in the pseudostratified olfactory epithelium (OE) mainly composed of olfactory sensory neurons surrounded by supporting cells known as sustentacular cells. The olfactory neurons project their axons to the olfactory bulb in the central nervous system offering a potential pathway for pathogens to enter the central nervous system by bypassing the blood brain barrier. In the present study, we explored the impact of SARS-CoV-2 infection on the olfactory system in golden Syrian hamsters. We observed massive damage of the OE as early as 2 days post nasal instillation of SARS-CoV-2, resulting in a major loss of cilia necessary for odour detection. These damages were associated with infection of a large proportion of sustentacular cells but not of olfactory neurons, and we did not detect any presence of the virus in the olfactory bulbs. We observed massive infiltration of immune cells in the OE and lamina propria of infected animals, which may contribute to the desquamation of the OE. The OE was partially restored 14 days post infection. Anosmia observed in COVID-19 patient is therefore likely to be linked to a massive and fast desquamation of the OE following sustentacular cells infection with SARS-CoV-2 and subsequent recruitment of immune cells in the OE and lamina propria.


Assuntos
Infecções por Coronavirus/patologia , Bulbo Olfatório/patologia , Mucosa Olfatória/patologia , Pneumonia Viral/patologia , Animais , Betacoronavirus , COVID-19 , Cílios/patologia , Infecções por Coronavirus/fisiopatologia , Mesocricetus , Transtornos do Olfato/patologia , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/virologia , Mucosa Olfatória/virologia , Neurônios Receptores Olfatórios/patologia , Neurônios Receptores Olfatórios/virologia , Pandemias , Pneumonia Viral/fisiopatologia , SARS-CoV-2
12.
Sci Rep ; 9(1): 12404, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455867

RESUMO

Hantaviruses are zoonotic agents transmitted from small mammals, mainly rodents, to humans, where they provoke diseases such as Hemorrhagic fever with Renal Syndrome (HFRS) and its mild form, Nephropathia Epidemica (NE), or Hantavirus Cardio-Pulmonary Syndrome (HCPS). Hantaviruses are spread worldwide and monitoring animal reservoirs is of primary importance to control the zoonotic risk. Here, we describe the development of a pan-viral resequencing microarray (PathogenID v3.0) able to explore the genetic diversity of rodent-borne hantaviruses endemic in Europe. Among about 800 sequences tiled on the microarray, 52 correspond to a tight molecular sieve of hantavirus probes covering a large genetic landscape. RNAs from infected animal tissues or from laboratory strains have been reverse transcribed, amplified, then hybridized to the microarray. A classical BLASTN analysis applied to the sequence delivered through the microarray allows to identify the hantavirus species up to the exact geographical variant present in the tested samples. Geographical variants of the most common European hantaviruses from France, Germany, Slovenia and Finland, such as Puumala virus, Dobrava virus and Tula virus, were genetically discriminated. Furthermore, we precisely characterized geographical variants still unknown when the chip was conceived, such as Seoul virus isolates, recently emerged in France and the United Kingdom.


Assuntos
Variação Genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Orthohantavírus/genética , Europa (Continente) , Orthohantavírus/classificação , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/patologia , Humanos , Filogenia , Filogeografia , Virus Puumala/classificação , Virus Puumala/genética , RNA Viral/genética , RNA Viral/metabolismo
13.
Viruses ; 11(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331096

RESUMO

Due to their large geographic distribution and potential high mortality rates in human infections, hantaviruses constitute a worldwide threat to public health. As such, they have been the subject of a large array of clinical, virological and eco-evolutionary studies. Many experiments have been conducted in vitro or on animal models to identify the mechanisms leading to pathogenesis in humans and to develop treatments of hantavirus diseases. Experimental research has also been dedicated to the understanding of the relationship between hantaviruses and their reservoirs. However, these studies remain too scarce considering the diversity of hantavirus/reservoir pairs identified, and the wide range of issues that need to be addressed. In this review, we present a synthesis of the experimental studies that have been conducted on hantaviruses and their reservoirs. We aim at summarizing the knowledge gathered from this research, and to emphasize the gaps that need to be filled. Despite the many difficulties encountered to carry hantavirus experiments, we advocate for the need of such studies in the future, at the interface of evolutionary ecology and virology. They are critical to address emerging areas of research, including hantavirus evolution and the epidemiological consequences of individual variation in infection outcomes.


Assuntos
Reservatórios de Doenças/virologia , Infecções por Hantavirus/transmissão , Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Evolução Biológica , Infecções por Hantavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Biológicos
14.
Viruses ; 11(8)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344894

RESUMO

Puumala virus is an RNA virus hosted by the bank vole (Myodes glareolus) and is today present in most European countries. Whilst it is generally accepted that hantaviruses have been tightly co-evolving with their hosts, Puumala virus (PUUV) evolutionary history is still controversial and so far has not been studied at the whole European level. This study attempts to reconstruct the phylogeographical spread of modern PUUV throughout Europe during the last postglacial period in the light of an upgraded dataset of complete PUUV small (S) segment sequences and by using most recent computational approaches. Taking advantage of the knowledge on the past migrations of its host, we identified at least three potential independent dispersal routes of PUUV during postglacial recolonization of Europe by the bank vole. From the Alpe-Adrian region (Balkan, Austria, and Hungary) to Western European countries (Germany, France, Belgium, and Netherland), and South Scandinavia. From the vicinity of Carpathian Mountains to the Baltic countries and to Poland, Russia, and Finland. The dissemination towards Denmark and North Scandinavia is more hypothetical and probably involved several independent streams from south and north Fennoscandia.


Assuntos
Arvicolinae/virologia , Evolução Molecular , Febre Hemorrágica com Síndrome Renal/veterinária , Filogenia , Virus Puumala/genética , Animais , Europa (Continente) , Febre Hemorrágica com Síndrome Renal/transmissão , Filogeografia
15.
Front Immunol ; 10: 860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105695

RESUMO

The Rift Valley fever virus (RVFV) is responsible for a serious mosquito-borne viral disease in humans and ruminants. The development of a new and safer vaccine is urgently needed due to the risk of introduction of this arbovirus into RVFV-free continents. We recently showed that a DNA vaccine encoding eGn, the ectodomain of the RVFV Gn glycoprotein, conferred a substantial protection in the sheep natural host and that the anti-eGn IgG levels correlated to protection. Addressing eGn to DEC205 reduced the protective efficacy while decreasing the antibody and increasing the IFNγ T cell responses in sheep. In order to get further insight into the involved mechanisms, we evaluated our eGn-encoding DNA vaccine strategy in the reference mouse species. A DNA vaccine encoding eGn induced full clinical protection in mice and the passive transfer of immune serum was protective. This further supports that antibodies, although non-neutralizing in vitro, are instrumental in the protection against RVFV. Addressing eGn to DEC205 was also detrimental to protection in mice, and in this species, both the antibody and the IFNγ T cell responses were strongly decreased. Conversely when using a plasmid encoding a different antigen, i.e., mCherry, DEC205 targeting promoted the antibody response. Altogether our results show that the outcome of targeting antigens to DEC205 depends on the species and on the fused antigen and is not favorable in the case of eGn. In addition, we bring evidences that eGn in itself is a pertinent antigen to be included in a DNA vaccine and that next developments should aim at promoting the anti-eGn antibody response.


Assuntos
Glicoproteínas/imunologia , Imunidade Humoral/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Células CHO , Linhagem Celular , Cricetulus , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral/imunologia
16.
NPJ Vaccines ; 3: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707242

RESUMO

Rift Valley fever virus, a phlebovirus endemic in Africa, causes serious diseases in ruminants and humans. Due to the high probability of new outbreaks and spread to other continents where competent vectors are present, vaccine development is an urgent priority as no licensed vaccines are available outside areas of endemicity. In this study, we evaluated in sheep the protective immunity induced by DNA vaccines encoding the extracellular portion of the Gn antigen which was either or not targeted to antigen-presenting cells. The DNA encoding untargeted antigen was the most potent at inducing IgG responses, although not neutralizing, and conferred a significant clinical and virological protection upon infectious challenge, superior to DNA vaccines encoding the targeted antigen. A statistical analysis of the challenge parameters supported that the anti-eGn IgG, rather than the T-cell response, was instrumental in protection. Altogether, this work shows that a DNA vaccine encoding the extracellular portion of the Gn antigen confers substantial-although incomplete-protective immunity in sheep, a natural host with high preclinical relevance, and provides some insights into key immune correlates useful for further vaccine improvements against the Rift Valley fever virus.

17.
Vector Borne Zoonotic Dis ; 17(11): 777-779, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28953448

RESUMO

Hantaviruses are a group of zoonotic viruses carried by rodents. Puumala virus (PUUV) and Dobrava virus (DOBV) are the causative agents of human hantavirus infections in Europe. Knowledge about hantavirus circulation in Italy is very scarce. West Nile virus (WNV) and Usutu virus (USUV) are emerging neuropathogenic flaviviruses, both endemic in most part of the Italian territories. To monitor the circulation of PUUV, DOBV, WNV, and USUV in natural environment in central Italy, we carried out serological surveillance in wild rodents. During this study, 90 animals were captured in forested areas of Abruzzo and Marche regions and tested with serological assays for the specific pathogens. Serological test provided no evidence of PUUV and DOBV circulation in the studied area. However, four rodents (Apodemus flavicollis) were found to be positive by WNV ELISA test. Two of them were confirmed as WNV by virus neutralization test.


Assuntos
Infecções por Flavivirus/veterinária , Flavivirus/isolamento & purificação , Infecções por Hantavirus/veterinária , Orthohantavírus/isolamento & purificação , Doenças dos Roedores/virologia , Roedores/classificação , Animais , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/virologia , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Itália/epidemiologia , Doenças dos Roedores/epidemiologia , Estudos Soroepidemiológicos , Zoonoses
18.
PLoS One ; 12(9): e0184015, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886097

RESUMO

Brown rats are one of the most widespread urban species worldwide. Despite the nuisances they induce and their potential role as a zoonotic reservoir, knowledge on urban rat populations remains scarce. The main purpose of this study was to characterize an urban brown rat population from Chanteraines park (Hauts-de-Seine, France), with regards to haematology, population genetics, immunogenic diversity, resistance to anticoagulant rodenticides, and community of parasites. Haematological parameters were measured. Population genetics was investigated using 13 unlinked microsatellite loci. Immunogenic diversity was assessed for Mhc-Drb. Frequency of the Y139F mutation (conferring resistance to rodenticides) and two linked microsatellites were studied, concurrently with the presence of anticoagulant residues in the liver. Combination of microscopy and molecular methods were used to investigate the occurrence of 25 parasites. Statistical approaches were used to explore multiple parasite relationships and model parasite occurrence. Eighty-six rats were caught. The first haematological data for a wild urban R. norvegicus population was reported. Genetic results suggested high genetic diversity and connectivity between Chanteraines rats and surrounding population(s). We found a high prevalence (55.8%) of the mutation Y139F and presence of rodenticide residues in 47.7% of the sampled individuals. The parasite species richness was high (16). Seven potential zoonotic pathogens were identified, together with a surprisingly high diversity of Leptospira species (4). Chanteraines rat population is not closed, allowing gene flow and making eradication programs challenging, particularly because rodenticide resistance is highly prevalent. Parasitological results showed that co-infection is more a rule than an exception. Furthermore, the presence of several potential zoonotic pathogens, of which four Leptospira species, in this urban rat population raised its role in the maintenance and spread of these pathogens. Our findings should stimulate future discussions about the development of a long-term rat-control management program in Chanteraines urban park.


Assuntos
Resistência a Medicamentos , Genética Populacional , Parasitos , Rodenticidas/farmacologia , Animais , Biodiversidade , Biomarcadores , Contagem de Células Sanguíneas , França , Variação Genética , Genótipo , Geografia , Fenômenos Imunogenéticos , Repetições de Microssatélites , Parasitos/classificação , Parasitos/genética , Ratos , Saúde da População Urbana , Vitamina K Epóxido Redutases/genética
19.
Virus Res ; 235: 67-72, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28396283

RESUMO

In Europe, the occurrence of nephropathia epidemica (NE), a human disease caused by Puumala virus (PUUV), exhibits considerable geographical heterogeneity despite the continuous distribution of its reservoir, the bank vole Myodes glareolus. To better understand the causes of this heterogeneity, wild voles sampled in two adjacent NE endemic and non-endemic regions of France were infected experimentally with PUUV. The responses of bank voles to PUUV infection, based on the levels of anti-PUUV IgG and viral RNA, were compared. Slight regional differences were highlighted despite the high inter-individual variability. Voles from the NE non-endemic region showed greater immune responsiveness to PUUV infection, but lower levels of RNA in their organs than voles from the endemic region. These results suggest the existence of regional variations in the sensitivity of bank voles that could contribute to the apparent absence of PUUV circulation among voles and the absence of NE in the non-endemic region.


Assuntos
Arvicolinae , Reservatórios de Doenças , Suscetibilidade a Doenças , Febre Hemorrágica com Síndrome Renal/virologia , Virus Puumala/imunologia , Virus Puumala/patogenicidade , Animais , Anticorpos Antivirais/sangue , França , Febre Hemorrágica com Síndrome Renal/patologia , Humanos , Imunoglobulina G/sangue , Virus Puumala/isolamento & purificação , RNA Viral/sangue , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA