Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1282278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115994

RESUMO

Introduction: Toxoplasma gondii, responsible for causing toxoplasmosis, is a prevalent food and waterborne pathogen worldwide. It commonly infects warm-blooded animals and affects more than a third of the global human population. Once ingested, the parasite enters the host's small intestine and rapidly disseminates throughout the body via the bloodstream, infiltrating various tissues. Leukocyte-driven responses are vital against T. gondii, with neutrophils playing a dual role: swiftly recruited to infection sites, releasing inflammatory mediators, and serving as a replication hub and Trojan horses, aiding parasite spread. Neutrophils from various hosts release extracellular traps (NETs) against the protozoan. However, gaps persist regarding the mechanisms of NETs production to parasite and their significance in infection control. This study investigates the interplay between human neutrophils and T. gondii, exploring dynamics, key molecules, and signaling pathways involved in NETs production upon protozoan challenge. Methods and Results: Using confocal and electron microscopy, live cell imaging, pharmacological inhibitors, and DNA quantification assays, we find that human neutrophils promptly release both classical and rapid NETs upon pathogen stimulation. The NETs structure exhibits diverse phenotypes over time and is consistently associated with microorganisms. Mechanisms involve neutrophil elastase and peptidylarginine deiminase, along with intracellular calcium signaling and the PI3K pathway. Unexpectedly, human traps do not diminish viability or infectivity, but potentially aid in capturing parasites for subsequent neutrophil phagocytosis and elimination. Discussion: By revealing NETs formation mechanisms and their nuanced impact on T. gondii infection dynamics, our findings contribute to broader insights into host-pathogen relationships.


Assuntos
Armadilhas Extracelulares , Toxoplasma , Toxoplasmose , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Toxoplasmose/metabolismo , Neutrófilos/metabolismo , Toxoplasma/fisiologia
2.
Front Microbiol ; 14: 1124378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922978

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis, a disease that affects warm-blooded animals and one third of the human population worldwide. Pregnant women who have never been exposed to the parasite constitute an important risk group, as infection during pregnancy often leads to congenital toxoplasmosis, the most severe form of the disease. Current therapy for toxoplasmosis is the same as it was 50 years ago and has little or no effect when vertical transmission occurs. Therefore, it is urgent to develop new strategies to prevent mother-to-fetus transmission. The implementation of experimental animal models of congenital toxoplasmosis that reproduces the transmission rates and clinical signs in humans opens an avenue of possibilities to interfere in the progression of the disease. In addition, knowing the parasite load in maternal and fetal tissues after infection, which may be related to organ abnormalities and disease outcome, is another important step in designing a promising intervention strategy. Therefore, we implemented here a murine model of congenital toxoplasmosis with outbred Swiss Webster mice infected intravenously with tachyzoites of the ME49 strain of T. gondii that mimics the frequency of transmission of the parasite, as well as important clinical signs of human congenital toxoplasmosis, such as macrocephaly, in addition to providing a highly sensitive quantitative real-time PCR assay to assess parasite load in mouse tissues. As the disease is not restricted to humans, also affecting several domestic animals, including companion animals and livestock, they can also benefit from the model presented in this study.

3.
Front Microbiol ; 13: 856686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422792

RESUMO

Protozoan parasites interact with a wide variety of organisms ranging from bacteria to humans, representing one of the most common causes of parasitic diseases and an important public health problem affecting hundreds of millions of people worldwide. The current treatment for these parasitic diseases remains unsatisfactory and, in some cases, very limited. Treatment limitations together with the increased resistance of the pathogens represent a challenge for the improvement of the patient's quality of life. The continuous search for alternative preclinical drugs is mandatory, but the mechanisms of action of several of these compounds have not been described. Electron microscopy is a powerful tool for the identification of drug targets in almost all cellular models. Interestingly, ultrastructural analysis showed that several classes of antiparasitic compounds induced similar autophagic phenotypes in trypanosomatids, trichomonadids, and apicomplexan parasites as well as in Giardia intestinalis and Entamoeba spp. with the presence of an increased number of autophagosomes as well as remarkable endoplasmic reticulum profiles surrounding different organelles. Autophagy is a physiological process of eukaryotes that maintains homeostasis by the self-digestion of nonfunctional organelles and/or macromolecules, limiting redundant and damaged cellular components. Here, we focus on protozoan autophagy to subvert drug effects, discussing its importance for successful chemotherapy.

4.
Front Med (Lausanne) ; 8: 711623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692720

RESUMO

Erythema Nodosum Leprosum (ENL) is a recurrent acute inflammatory complication of leprosy affecting up to 50% of all Borderline Lepromatous and Lepromatous Leprosy (BL/LL) patients. Although ENL is described as an immune reaction mediated by neutrophils, studies demonstrating the direct role of neutrophils in ENL are still rare. One subpopulation of low-density neutrophils (LDNs), present within the fraction of peripheral blood mononuclear cells (PBMC), has been associated with the pathogenesis and severity of diseases like sepsis, lupus, and tuberculosis. We herein analyzed LDNs and high-density neutrophils (HDNs) in terms of frequency, phenotype, and morphology. Serum levels of MMP-9 (a neutrophilic degranulation marker) were evaluated by ELISA; and LDNs were generated in vitro by stimulating healthy-donor, whole-blood cultures. PBMC layers of ENL patients presented segmented/hypersegmented cells that were morphologically compatible with neutrophils. Immunofluorescence analyses identified LDNs in ENL. Flow cytometry confirmed the elevated frequency of circulating LDNs (CD14-CD15+) in ENL patients compared to healthy donors and nonreactional Borderline Tuberculoid (BT) patients. Moreover, flow cytometry analyses revealed that ENL LDNs had a neutrophilic-activated phenotype. ENL patients under thalidomide treatment presented similar frequency of LDNs as observed before treatment but its activation status was lower. In addition, Mycobacterium leprae induced in vitro generation of LDNs in whole blood in a dose-dependent fashion; and TGF-ß, an inhibitor of neutrophilic degranulation, prevented LDNs generation. MMP-9 serum levels of BL/LL patients with or without ENL correlated with LDNs frequency at the same time that ultrastructural observations of ENL LDNs showed suggestive signs of degranulation. Together, our data provide new insights into the knowledge and understanding of the pathogenesis of ENL while enriching the role of neutrophils in leprosy.

5.
Microorganisms ; 8(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105542

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis, an infectious disease that affects over 30% of the human world population, causing fatal infections in immunocompromised individuals and neonates. The life cycle of T. gondii is complex, and involves intermediate hosts (birds and mammals) and definitive hosts (felines, including domestic cats). The innate immune repertoire against the parasite involves the production of neutrophil extracellular traps (NET), and neutrophils from several intermediate hosts produce NET induced by T. gondii. However, the mechanisms underlying NET release in response to the parasite have been poorly explored. Therefore, the aims of this study were to investigate whether neutrophils from cats produce NET triggered by T. gondii and to understand the mechanisms thereby involved. Neutrophils from cats were stimulated with T. gondii tachyzoites and NET-derived DNA in the supernatant was quantified during the time. The presence of histone H1 and myeloperoxidase was detected by immunofluorescence. We observed that cat neutrophils produce both classical and rapid/early NET stimulated by T. gondii. Inhibition of elastase, intracellular calcium, and phosphatidylinositol 3-kinase (PI3K)-δ partially blocked classical NET release in response to the parasite. Electron microscopy revealed strands and networks of DNA in close contact or completely entrapping parasites. Live imaging showed that tachyzoites are killed by NET. We conclude that the production of NET is a conserved strategy to control infection by T. gondii amongst intermediate and definitive hosts.

6.
Sci Rep ; 6: 36813, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827453

RESUMO

Olfactory ensheathing cells (OECs) are a type of specialized glial cell currently considered as having a double function in the nervous system: one regenerative, and another immune. Streptococcus pneumoniae is a major agent of severe infections in humans, including meningitis. It is commonly found in the nasopharynx of asymptomatic carriers, and, under certain still unknown conditions, can invade the brain. We evaluated whether pneumococcal cells recovered from lysed OECs and microglia are able to survive by manipulating the host cell activation. An intracellular-survival assay of S. pneumoniae in OECs showed a significant number of bacterial CFU recovered after 3 h of infection. In contrast, microglia assays resulted in a reduced number of CFU. Electron-microscopy analysis revealed a large number of pneumococci with apparently intact morphology. However, microglia cells showed endocytic vesicles containing only bacterial cell debris. Infection of OEC cultures resulted in continuous NF-κB activation. The IFN-γ-induced increase of iNOS expression was reversed in infected OECs. OECs are susceptible to S. pneumoniae infection, which can suppress their cytotoxic mechanisms in order to survive. We suggest that, in contrast to microglia, OECs might serve as safe targets for pneumococci, providing a more stable environment for evasion of the immune system.


Assuntos
Microglia/citologia , Bulbo Olfatório/citologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Células Cultivadas , Contagem de Colônia Microbiana , Interferon gama/metabolismo , Microglia/metabolismo , Microglia/microbiologia , Microscopia Eletrônica , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Bulbo Olfatório/metabolismo , Bulbo Olfatório/microbiologia , Ratos
7.
J Leukoc Biol ; 100(4): 801-810, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27154356

RESUMO

Upon in vitro stimulation, neutrophils undergo a cell death named netosis. This process is characterized by extracellular release of chromatin scaffold associated with granular and cytoplasmic proteins, which together, ensnare and kill microbes. We have previously described that interaction of Leishmania amazonensis with human neutrophils leads to the release of neutrophil extracellular traps, which trap and kill the parasite. However, the signaling leading to Leishmania induced netosis is still unknown. Thus, we sought to evaluate signaling events that drive L. amazonensis induced neutrophil extracellular trap release from human neutrophils. Here, we found that PI3K, independently of protein kinase B, has a role in parasite-induced netosis. We also described that the main isoforms involved are PI3Kγ and PI3Kδ, which work in reactive oxygen species-dependent and -independent ways, respectively. We demonstrated that activation of ERK downstream of PI3Kγ is important to trigger reactive oxygen species-dependent, parasite-induced netosis. Pharmacological inhibition of protein kinase C also significantly decreased parasite-induced neutrophil extracellular trap release. Intracellular calcium, regulated by PI3Kδ, represents an alternative reactive oxygen species-independent pathway of netosis stimulated by L. amazonensis Finally, intracellular calcium mobilization and reactive oxygen species generation are the major regulators of parasite-induced netosis. Our results contribute to a better understanding of the signaling behind netosis induced by interactions between Leishmania and neutrophils.


Assuntos
Sinalização do Cálcio/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Armadilhas Extracelulares/parasitologia , Leishmania mexicana/imunologia , Sistema de Sinalização das MAP Quinases , Neutrófilos/imunologia , Proteína Quinase C/fisiologia , Cromatina/ultraestrutura , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo
8.
J Neuroimmunol ; 286: 25-32, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26298321

RESUMO

The prion protein (PrP(C)) is predominantly expressed in the nervous and immune systems and is involved in relevant cell signaling. Microglia participate in neuroimmune interactions, and their regulatory mechanisms are critical for both health and disease. Despite recent reports with a microglial cell line, little is known about the relevance of PrP(C) in brain microglia. We investigated the role of PrP(C) in mouse primary microglia, and found no differences between wild type and Prnp-null cells in cell morphology or the expression of a microglial marker. Translocation of NF-κB to the nucleus also did not differ, nor did cytokine production. The levels of iNOS were also similar and, finally, microglia of either genotype showed no differences in either rates of phagocytosis or migration, even following activation. Thus, functional roles of PrP(C) in primary microglial cells are - if present - much more subtle than in transformed microglial cell lines.


Assuntos
Regulação da Expressão Gênica/genética , Microglia/metabolismo , Príons/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Príons/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Fatores de Tempo
9.
PLoS One ; 10(2): e0118600, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695249

RESUMO

The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/parasitologia , Doença de Chagas/fisiopatologia , Interferon gama/farmacologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Citocinas/metabolismo , Feminino , Imuno-Histoquímica , Infliximab/farmacologia , Interferon gama/genética , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento
10.
PLoS One ; 8(2): e57384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451217

RESUMO

Hemocytes are the first line of defense of the immune system in invertebrates, but despite their important role and enormous potential for the study of gene-environment relationships, research has been impeded by a lack of consensus on their classification. Here we used flow cytometry combined with histological procedures, histochemical reactions and transmission electron microscopy to characterize the hemocytes from the oyster Crassostrea rhizophorae. Transmission electron microscopy revealed remarkable morphological characteristics, such as the presence of membranous cisternae in all mature cells, regardless of size and granulation. Some granular cells contained many cytoplasmic granules that communicated with each other through a network of channels, a feature never previously described for hemocytes. The positive reactions for esterase and acid phosphatase also indicated the presence of mature cells of all sizes and granule contents. Flow cytometry revealed a clear separation in complexity between agranular and granular populations, which could not be differentiated by size, with cells ranging from 2.5 to 25 µm. Based on this evidence we suggest that, at least in C. rhizophorae, the different subpopulations of hemocytes may in reality be different stages of one type of cell, which accumulates granules and loses complexity (with no reduction in size) as it degranulates in the event of an environmental challenge.


Assuntos
Hemócitos/citologia , Ostreidae/citologia , Animais , Citometria de Fluxo , Microscopia Eletrônica de Transmissão
11.
J Biol Chem ; 287(42): 35506-35515, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22910907

RESUMO

The prion protein (PrP(C)) is a cell surface protein expressed mainly in the nervous system. In addition to the role of its abnormal conformer in transmissible spongiform encephalopathies, normal PrP(C) may be implicated in other degenerative conditions often associated with inflammation. PrP(C) is also present in cells of hematopoietic origin, including T cells, dendritic cells, and macrophages, and it has been shown to modulate their functions. Here, we investigated the impact of inflammation and stress on the expression and function of PrP(C) in neutrophils, a cell type critically involved in both acute and chronic inflammation. We found that systemic injection of LPS induced transcription and translation of PrP(C) in mouse neutrophils. Up-regulation of PrP(C) was dependent on the serum content of TGF-ß and glucocorticoids (GC), which, in turn, are contingent on the activation of the hypothalamic-pituitary-adrenal axis in response to systemic inflammation. GC and TGF-ß, either alone or in combination, directly up-regulated PrP(C) in neutrophils, and accordingly, the blockade of GC receptors in vivo curtailed the LPS-induced increase in the content of PrP(C). Moreover, GC also mediated up-regulation of PrP(C) in neutrophils following noninflammatory restraint stress. Finally, neutrophils with up-regulated PrP(C) presented enhanced peroxide-dependent cytotoxicity to endothelial cells. The data demonstrate a novel interplay of the nervous, endocrine, and immune systems upon both the expression and function of PrP(C) in neutrophils, which may have a broad impact upon the physiology and pathology of various organs and systems.


Assuntos
Regulação da Expressão Gênica , Sistema Hipotálamo-Hipofisário/metabolismo , Neutrófilos/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas PrPC/biossíntese , Estresse Fisiológico , Animais , Glucocorticoides/genética , Glucocorticoides/imunologia , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/patologia , Proteínas PrPC/genética , Proteínas PrPC/imunologia , Doenças Priônicas/genética , Doenças Priônicas/imunologia , Doenças Priônicas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
12.
Cell Physiol Biochem ; 28(2): 267-78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21865734

RESUMO

BACKGROUND/AIMS: Renal tubular cells are the main target of ischemic insult associated with acute renal injury. Low oxygen and nutrient supplies result in ATP depletion, leading to cell death and loss of renal function. A possible mechanism by which bone marrow-derived cells support renal tissue regeneration relies on the capacity of mononuclear cells (BMMC), particularly mesenchymal stem cells (MSC), to secrete paracrine factors that mediate support for kidney regeneration. METHODS: BMMC/MSC and renal cells (LLC-PK(1) from pig and IRPTC from rat) were co-cultured under stressful conditions (ATP depletion and/or serum free starvation), physically separated by a microporous membrane (0.4 µm), was used to determine whether bone marrow-derived cells can interact with renal cells in a paracrine manner. RESULTS: This interaction resulted in stimulation of renal cell proliferation and the arrest of cell death. MSC elicit effective responses in renal cells in terms of stimulating proliferation and protection. Such effects are observed in renal cells co-cultured with rat BMMC/MSC, an indication that paracrine mechanisms are not entirely species-specific. CONCLUSION: The paracrine action of BMMC/MSC was influenced by a renal cell stimulus released during stress, indicating that cross-talk with injured cells is required for renal regeneration supported by bone marrow-derived cells.


Assuntos
Células da Medula Óssea/citologia , Células Epiteliais/citologia , Túbulos Renais Proximais/citologia , Células-Tronco Mesenquimais/citologia , Comunicação Parácrina/fisiologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro , Masculino , Ratos , Ratos Wistar , Suínos
13.
PLoS One ; 6(1): e16058, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298035

RESUMO

Nuclear migration is regulated by the LIS1 protein, which is the regulatory subunit of platelet activating factor (PAF) acetyl-hydrolase, an enzyme complex that inactivates the lipid mediator PAF. Among other functions, PAF modulates cell proliferation, but its effects upon mechanisms of the cell cycle are unknown. Here we show that PAF inhibited interkinetic nuclear migration (IKNM) in retinal proliferating progenitors. The lipid did not, however, affect the velocity of nuclear migration in cells that escaped IKNM blockade. The effect depended on the PAF receptor, Erk and p38 pathways and Chk1. PAF induced no cell death, nor a reduction in nucleotide incorporation, which rules out an intra-S checkpoint. Notwithstanding, the expected increase in cyclin B1 content during G2-phase was prevented in the proliferating cells. We conclude that PAF blocks interkinetic nuclear migration in retinal progenitor cells through an unusual arrest of the cell cycle at the transition from S to G2 phases. These data suggest the operation, in the developing retina, of a checkpoint that monitors the transition from S to G2 phases of the cell cycle.


Assuntos
Núcleo Celular/fisiologia , Fase G2 , Fator de Ativação de Plaquetas/fisiologia , Glicoproteínas da Membrana de Plaquetas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Fase S , Animais , Transporte Biológico , Proliferação de Células , Quinase 1 do Ponto de Checagem , MAP Quinases Reguladas por Sinal Extracelular , Proteínas Quinases , Ratos , Retina/citologia , Células-Tronco , Proteínas Quinases p38 Ativadas por Mitógeno
14.
Histochem Cell Biol ; 125(5): 545-56, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16273383

RESUMO

Tritrichomonas foetus is an amitochondriate parasite that possesses hydrogenosomes, unusual anerobic energy-producing organelles. In these organisms the "mitochondrial cell death machinery" is supposed to be absent, and the mechanisms that lead to cell demise remain to be elucidated. The presence of a cell death program in trichomonads has already been reported, suggesting the existence of a caspase-like execution pathway in such organisms. Here we demonstrate the alterations provoked by the fungicide griseofulvin and raise the possibility that other cell death pathways may exist in T. foetus. Dramatic changes in trichomonads morphology are presented after griseofulvin treatment, such as intense plasma membrane and nuclear envelope blebbing, nucleus fragmentation, and an abnormal number of oversized vacuoles. One important finding was the exposition of phosphatidylserine (PS) in the outer leaflet of the plasma membrane in cells after drug treatment, and also the presence of a high amount of misshapen flagella and tubulin precipitates as vacuolar contents, suggesting an autophagic process of abnormal cellular elements. Interestingly, immunoreactivity for activated caspase-3 was not detected during griseofulvin treatment, a finding distinct from the observed when this cell was treated with H(2)O(2). The possibility of the existence of different pathways to cell death in trichomonads is discussed.


Assuntos
Morte Celular/fisiologia , Griseofulvina/farmacologia , Trichomonas/citologia , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Hidrogênio/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Organelas/metabolismo , Fosfatidilserinas/metabolismo , Trichomonas/efeitos dos fármacos , Trichomonas/crescimento & desenvolvimento
15.
Histochem Cell Biol ; 120(2): 129-41, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12844218

RESUMO

Tritrichomonas foetus is an amitochondrial parasite protist which lacks typical eukaryote organelles such as mitochondria and peroxisomes, but possesses the hydrogenosome, a double-membrane-bound organelle that produces ATP. The cell death of amitochondrial organisms is poorly studied. In the present work, the cytotoxic effects of hydrogen peroxide on T. foetus and its participation on cell death were analyzed. We took advantage of several microscopy techniques, including videomicroscopy, light microscopy immunocytochemistry for detection of caspase activation, and scanning and transmission electron microscopy. We report here that in T. foetus: (1) H(2)O(2) leads to loss of motility and induces cell death, (2) the dying cells exhibit some characteristics similar to those found during the death of other organisms, and (3) a caspase-like protein seems to be activated during the death process. Thus, we propose that, although T. foetus does not present mitochondria nor any known pathways of cell death, it is likely that it bears mechanisms of cell demise. T. foetus exhibits morphological and physiological alterations in response to H(2)O(2) treatment. The hydrogenosome, a unique organelle which is supposed to share a common ancestral origin with mitochondria and has an important role in oxidative responses in trichomonads, is a candidate for participating in this event.


Assuntos
Apoptose , Caspases/metabolismo , Peróxido de Hidrogênio/toxicidade , Tritrichomonas foetus/efeitos dos fármacos , Animais , Fator de Indução de Apoptose , Caspase 3 , Caspases/fisiologia , Flavoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias , Tritrichomonas foetus/enzimologia , Tritrichomonas foetus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...