Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37926802

RESUMO

The world has been facing an increase in various natural hazards. The coastal regions are recognized as one of the most vulnerable due to high population pressure and climate change intensity. Mediterranean countries have one of the most burnable ecosystems in the world, one of the most exposed to pluvial floods, and have the highest erosion rates within the EU. Therefore, the aim of this study was to develop the first multihazard susceptibility model in Croatia for the Sali settlement (island of Dugi otok). The creation of a multi-hazard susceptibility model (MHSM) combined the application of geospatial technology (GST) with a local perception survey. The methodology consisted of two main steps: (1) creating individual hazard susceptibility models (soil erosion, wildfires, pluvial floods), and (2) overall hazard susceptibility modeling. Multicriterial GIS analyses and the Analytical Hierarchy Process were used to create individual hazard models. Criteria used (32) to create models are derived from very-high-resolution (VHR) models. Two versions of MHSM are created: 1) all criteria with equal weighting coefficients and 2) weight coefficients determined based on public perception. According to MHSM 1, most of the research (58%) area is moderately susceptible to multiple hazards. Highly and very highly susceptible areas are 27% of the drainage basin and are mostly located near roads and houses. MHSM 2 reveals similar results to MHSM 1. The public perceives that the research area is the most susceptible to wildfires. The wildfire ignition risk is ranked as moderate (3.00) with a standard deviation of 1.16. Pluvial flood risk is ranked low (2.78), with a standard deviation of 1.15. The risk of soil is most inferior (2.24) with a standard deviation of 0.91. The the most significant difference between public perception and the GIS-MCDA model of hazard susceptibility is related to soil erosion. However, the accuracy of the soil erosion model was confirmed by ROC curves based on recent traces of soil erosion in the research area. The proposed methodological framework of multi-hazard susceptibility modeling can be applied, with minor modifications, to other Mediterranean countries.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513139

RESUMO

Full and partial restorations in dentistry must replicate the characteristics of the patient's natural teeth. Materials must have good mechanical properties and be non-toxic and biocompatible. Microbes, which can form biofilms, are constantly in contact with restorations. In this study, we investigate how well Candida albicans adheres to a polymethyl methacrylate (PMMA) resin base with gold (Au) nanoparticles. We synthesized Au nanoparticles and characterized them. The average size of Au nanoparticles embedded in PMMA was 11 nm. The color difference ΔE between PMMA and PMMA/Au composites was 2.7 and was still esthetically acceptable to patients. PMMA/Au surfaces are smoother and more hydrophilic than pure PMMA surfaces, and the isoelectric point of both types of surfaces was 4.3. Above the isoelectric point, PMMA/Au surfaces are more negatively charged than PMMA surfaces. The added Au nanoparticles decreased the tensile strength, while the hardness did not change significantly. Adhesion measurements showed that PMMA surfaces modified with Au nanoparticles reduced the extent of microbial adhesion of Candida albicans.

3.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35566920

RESUMO

Antitumor applications of ascorbic acid (AA) and its oxidized form dehydroascorbic acid (DHA) can be quite challenging due to their instability and sensitivity to degradation in aqueous media. To overcome this obstacle, we have synthesized solid lipid nanoparticles loaded with ascorbyl palmitate (SLN-AP) with variations in proportions of the polymer Pluronic F-68. SLNs were synthesized using the hot homogenization method, characterized by measuring the particle size, polydispersity, zeta potential and visualized by TEM. To investigate the cellular uptake of the SLN, we have incorporated coumarin-6 into the same SLN formulation and followed their successful uptake for 48 h. We have tested the cytotoxicity of the SLN formulations and free ascorbate forms, AA and DHA, on HEK 293 and U2OS cell lines by MTT assay. The SLN-AP in both formulations have a cytotoxic effect at lower concentrations when compared to ascorbate applied the form of AA or DHA. Better selectivity for targeting tumor cell line was observed with 3% Pluronic F-68. The antioxidative effect of the SLN-AP was observed as early as 1 h after the treatment with a small dose of ascorbate applied (5 µM). SLN-AP formulation with 3% Pluronic F-68 needs to be further optimized as an ascorbate carrier due to its intrinsic cytotoxicity.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120326, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481250

RESUMO

The binding of glucosamine to gold in water solutions of glucosamine hydrochloride mixed with clean colloidal gold nanoparticles obtained by laser ablation in liquid was studied using surface-enhanced Raman scattering (SERS), dynamic light scattering (DLS) and UV-VIS spectroscopy. The purpose of this study was to establish whether the binding of charged aminogroup to gold nanoparticles (AuNPs) is taking place, and if it does, how can it be identified by means of SERS. The average size of dried gold nanoparticles was (20 ± 4) nm determined by averaging the sizes observed in transmission electron microscopy micrographs, which is smaller than the average size of gold nanoparticles in water solution as determined by DLS: (52 ± 2) nm. Upon adding the glucosamine solutions to gold colloid, average hydrodynamic diameter of ions was slightly larger for 0.1 mM glucosamine solution (55 ± 2 nm), while it increased to (105 ± 22) nm in the case of 1 mM solution, and was (398 ± 54) nm when 10 mM glucosamine solution was added. Most prominent Raman bands observed both for 0.1 mM and 1 mM glucosamine solutions were located at 1165 cm-1, 1532 and 1586 cm-1 and assigned to C-N coupled with C-C stretching, and C-NH3+ deformation angles bending. In SERS spectrum of 1 mM GlcN+ solution, two strong bands at 999 and 1075 cm-1 were found and attributed to C-Oring stretching coupled with C-NH3+ bending (999 cm-1) and to dominantly C-O stretching vibration. The differences in SERS spectra are attributed to different number of glucosamine molecules that attach to gold nanoparticles and their orientation with respect to the metal particle surface, partly due to presence of beta anomers protonated at anomeric oxygen position. The assignment of glucosamine bands was further corroborated by comparison with vibrational spectra of alpha and beta glucose and of polycrystalline powder of glucosamine hydrochloride. For all three substances comprehensive calculation of vibrational density of states was conducted using density functional theory. Benchmark bands for polycrystalline glucose anomers distinction are 846 and 915 cm-1 for alpha glucose, and 902 cm-1 for beta glucose. However, the bands observed in SERS spectra of 0.1 mM glucosamine solution at 831, 899, and 946 cm-1 or in 1 mM solution at 934 cm-1 cannot be easily identified as belonging either to alpha or beta glucosamine anomer, due to complexity of atomic motions involved. The identification of vibrational bands associated with -CNH3+ group will aid SERS studies on amino acids, especially in cases when several atomic groups could possibly bind to AuNPs.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Glucosamina , Ouro , Coloide de Ouro
5.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947698

RESUMO

The dispersion of platinum (Pt) on metal oxide supports is important for catalytic and gas sensing applications. In this work, we used mechanochemical dispersion and compatible Fe(II) acetate, Sn(II) acetate and Pt(II) acetylacetonate powders to better disperse Pt in Fe2O3 and SnO2. The dispersion of platinum in SnO2 is significantly different from the dispersion of Pt over Fe2O3. Electron microscopy has shown that the elements Sn, O and Pt are homogeneously dispersed in α-SnO2 (cassiterite), indicating the formation of a (Pt,Sn)O2 solid solution. In contrast, platinum is dispersed in α-Fe2O3 (hematite) mainly in the form of isolated Pt nanoparticles despite the oxidative conditions during annealing. The size of the dispersed Pt nanoparticles over α-Fe2O3 can be controlled by changing the experimental conditions and is set to 2.2, 1.2 and 0.8 nm. The rather different Pt dispersion in α-SnO2 and α-Fe2O3 is due to the fact that Pt4+ can be stabilized in the α-SnO2 structure by replacing Sn4+ with Pt4+ in the crystal lattice, while the substitution of Fe3+ with Pt4+ is unfavorable and Pt4+ is mainly expelled from the lattice at the surface of α-Fe2O3 to form isolated platinum nanoparticles.

6.
Nanomaterials (Basel) ; 10(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932706

RESUMO

Magnetic polymer gels are a new promising class of nanocomposite gels. In this work, magnetic PEO/iron oxide nanocomposite hydrogels were synthesized using the one-step -irradiation method starting from poly(ethylene oxide) (PEO) and iron(III) precursor alkaline aqueous suspensions followed by simultaneous crosslinking of PEO chains and reduction of Fe(III) precursor. -irradiation dose and concentrations of Fe3+, 2-propanol and PEO in the initial suspensions were varied and optimized. With 2-propanol and at high doses magnetic gels with embedded magnetite nanoparticles were obtained, as confirmed by XRD, SEM and Mössbauer spectrometry. The quantitative determination of -irradiation generated Fe2+ was performed using the 1,10-phenanthroline method. The maximal Fe2+ molar fraction of 0.55 was achieved at 300 kGy, pH = 12 and initial 5% of Fe3+. The DSC and rheological measurements confirmed the formation of a well-structured network. The thermal and rheological properties of gels depended on the dose, PEO concentration and initial Fe3+ content (amount of nanoparticles synthesized inside gels). More amorphous and stronger gels were formed at higher dose and higher nanoparticle content. The properties of synthesized gels were determined by the presence of magnetic iron oxide nanoparticles, which acted as reinforcing agents and additional crosslinkers of PEO chains thus facilitating the one-step gel formation.

7.
Molecules ; 25(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079341

RESUMO

Commercial micrometer silicon (Si) powder was investigated as a potential anode material for lithium ion (Li-ion) batteries. The characterization of this powder showed the mean particle size of approx.75.2 nm, BET surface area of 10.6 m2/g and average pore size of 0.56 nm. Its band gap was estimated to 1.35 eV as determined using UV-Vis diffuse reflectance spectra. In order to increase the surface area and porosity which is important for Li-ion batteries, the starting Si powder was ball-milled and threatened by metal-assisted chemical etching. The mechanochemical treatment resulted in decrease of the particle size from 75 nm to 29 nm, an increase of the BET surface area and average pore size to 16.7 m2/g and 1.26 nm, respectively, and broadening of the X-ray powder diffraction (XRD) lines. The XRD patterns of silver metal-assisted chemical etching (MACE) sample showed strong and narrow diffraction lines typical for powder silicon and low-intensity diffraction lines typical for silver. The metal-assisted chemical etching of starting Si material resulted in a decrease of surface area to 7.3 m2/g and an increase of the average pore size to 3.44 nm. These three materials were used as the anode material in lithium-ion cells, and their electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge-discharge cycles. The enhanced electrochemical performance of the sample prepared by MACE is attributed to increase in pore size, which are large enough for easy lithiation. These are the positive aspects of the application of MACE in the development of an anode material for Li-ion batteries.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanoestruturas/química , Silício/química , Técnicas Eletroquímicas , Eletrodos , Íons , Nitrogênio/química , Tamanho da Partícula , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
8.
MethodsX ; 6: 2553-2561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31908982

RESUMO

Developed GIS automated multicriteria analysis (GAMA) method presented in this article allows automation and simplification of multicriteria GIS decision analysis (GIS-MCDA) susceptibility modelling. Traditional GIS-MCDA susceptibility modelling still represents time and labor demanding process, whose success is highly influenced by the user's experience and knowledge. In order to make overall GIS-MCDA susceptibility modelling process more straightforward and practical, GAMA method is designed as easy to use three step process, which allows automation of following GIS-MCDA steps: (1) standardization of criteria, (2) criteria grouping and weight assignment and (3) susceptibility model aggregation. GAMA method is developed within ArcGIS 10.4 ModelBuilder application, as a toolset that can be easily shared and incorporated within default ESRI's ArcGIS toolbox. GAMA was successfully applied for gully erosion susceptibility modelling on example of Pag island, Croatia, whose results are published in separate article. Since GAMA method is applicable to various GIS-MCDA susceptibility modelling purposes we are encouraging its future use and therefore open-source GAMA method toolset can be acquired for research purposes (htps://gal.unizd.hr). •GAMA method simplifies overall GIS-MCDA susceptibility modelling process.•GAMA allows automated standardization, grouping, weight coefficient assignment and aggregation of GIS-MCDA's criteria.•GAMA method has broad application in various different GIS-MCDA susceptibility modelling purposes.

9.
ISA Trans ; 42(3): 497-504, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12858982

RESUMO

Increasing complexity of the contemporary industrial measurement systems is a common characteristic. Partitioning of the measurement process into software components that can be realized as separate objects facilitates the development of the measurement system. Using a client/server approach, the measurement system components become shareable and accessible across the network. The components can be deployed anywhere on the network and shared by a considerable number of applications. The paper describes a realization of the flow measurement system with distributed software components, i.e., measurement procedures, which include the concurrent calculation of the measurement results and the corresponding uncertainties.


Assuntos
Metodologias Computacionais , Armazenamento e Recuperação da Informação/métodos , Modelos Teóricos , Software , Redes de Comunicação de Computadores , Estudos de Viabilidade , Reologia/instrumentação , Reologia/métodos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...