Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(3): e1008344, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150575

RESUMO

A recent genome-wide screen identified ~300 essential or growth-supporting genes in the dental caries pathogen Streptococcus mutans. To be able to study these genes, we built a CRISPR interference tool around the Cas9 nuclease (Cas9Smu) encoded in the S. mutans UA159 genome. Using a xylose-inducible dead Cas9Smu with a constitutively active single-guide RNA (sgRNA), we observed titratable repression of GFP fluorescence that compared favorably to that of Streptococcus pyogenes dCas9 (Cas9Spy). We then investigated sgRNA specificity and proto-spacer adjacent motif (PAM) requirements. Interference by sgRNAs did not occur with double or triple base-pair mutations, or if single base-pair mutations were in the 3' end of the sgRNA. Bioinformatic analysis of >450 S. mutans genomes allied with in vivo assays revealed a similar PAM recognition sequence as Cas9Spy. Next, we created a comprehensive library of sgRNA plasmids that were directed at essential and growth-supporting genes. We discovered growth defects for 77% of the CRISPRi strains expressing sgRNAs. Phenotypes of CRISPRi strains, across several biological pathways, were assessed using fluorescence microscopy. A variety of cell structure anomalies were observed, including segregational instability of the chromosome, enlarged cells, and ovococci-to-rod shape transitions. CRISPRi was also employed to observe how silencing of cell wall glycopolysaccharide biosynthesis (rhamnose-glucose polysaccharide, RGP) affected both cell division and pathogenesis in a wax worm model. The CRISPRi tool and sgRNA library are valuable resources for characterizing essential genes in S. mutans, some of which could prove to be promising therapeutic targets.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/fisiologia , Streptococcus mutans , Estudo de Associação Genômica Ampla , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/biossíntese , RNA Guia de Cinetoplastídeos/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo
2.
J Bacteriol ; 200(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109185

RESUMO

A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro, including the increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome, with a screen to identify mutants that aberrantly expressed comX, coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g., comR, comS, comD, comE, cipB, clpX, rcrR, and ciaH, but disclosed an additional 20 genes that were not previously competence associated. The competence phenotypes of mutants were characterized, including by fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, the sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans, while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes.IMPORTANCEStreptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans Here, we used transposon mutagenesis and genomic technologies to identify novel genes involved in competence development. In addition to identifying genes previously known to be required for comX expression, 20 additional genes were identified and characterized. The findings create opportunities to diminish the pathogenic potential of S. mutans, while validating technologies that can rapidly advance our understanding of the physiology, biology, and genetics of S. mutans and related pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/fisiologia , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Streptococcus mutans/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Streptococcus mutans/metabolismo
3.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167671

RESUMO

Yersinia pestis, the causative agent of plague, binds host cells to deliver cytotoxic Yop proteins into the cytoplasm that prevent phagocytosis and generation of proinflammatory cytokines. Ail is an eight-stranded ß-barrel outer membrane protein with four extracellular loops that mediates cell binding and resistance to human serum. Following the deletion of each of the four extracellular loops that potentially interact with host cells, the Ail-Δloop 2 and Ail-Δloop 3 mutant proteins had no cell-binding activity while Ail-Δloop 4 maintained cell binding (the Ail-Δloop 1 protein was unstable). Using the codon mutagenesis scheme SWIM (selection without isolation of mutants), we identified individual residues in loops 1, 2, and 3 that contribute to host cell binding. While several residues contributed to the binding of host cells and purified fibronectin and laminin, as well as Yop delivery, three mutations, F80A (loop 2), S128A (loop 3), and F130A (loop 3), produced particularly severe defects in cell binding. Combining these mutations led to an even greater reduction in cell binding and severely impaired Yop delivery with only a slight defect in serum resistance. These findings demonstrate that Y. pestis Ail uses multiple extracellular loops to interact with substrates important for adhesion via polyvalent hydrophobic interactions.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Domínios e Motivos de Interação entre Proteínas , Yersinia pestis , Sequência de Aminoácidos , Aminoácidos/química , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Matriz Extracelular/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Ligação Proteica , Deleção de Sequência , Yersinia pestis/genética , Yersinia pestis/imunologia , Yersinia pestis/metabolismo
4.
Microbiologyopen ; 5(5): 870-882, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27168165

RESUMO

The type II secretion system Eps in Vibrio cholerae promotes the extracellular transport of cholera toxin and several hydrolytic enzymes and is a major virulence system in many Gram-negative pathogens which is structurally related to the type IV pilus system. The cytoplasmic ATPase EpsE provides the energy for exoprotein secretion through ATP hydrolysis. EpsE contains a unique metal-binding domain that coordinates zinc through a tetracysteine motif (CXXCX29 CXXC), which is also present in type IV pilus assembly but not retraction ATPases. Deletion of the entire domain or substitution of any of the cysteine residues that coordinate zinc completely abrogates secretion in an EpsE-deficient strain and has a dominant negative effect on secretion in the presence of wild-type EpsE. Consistent with the in vivo data, chemical depletion of zinc from purified EpsE hexamers results in loss of in vitro ATPase activity. In contrast, exchanging the residues between the two dicysteines with those from the homologous ATPase XcpR from Pseudomonas aeruginosa does not have a significant impact on EpsE. These results indicate that, although the individual residues in the metal-binding domain are generally interchangeable, zinc coordination is essential for the activity and function of EpsE.


Assuntos
Proteínas de Bactérias/metabolismo , Toxina da Cólera/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Vibrio cholerae/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico/fisiologia , Proteínas de Fímbrias/metabolismo , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/genética , Vibrio cholerae/enzimologia
5.
mBio ; 7(1): e01656-15, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26814178

RESUMO

UNLABELLED: Bacterial communities are established through a combination of cooperative and antagonistic interactions between the inhabitants. Competitive interactions often involve the production of antimicrobial substances, including bacteriocins, which are small antimicrobial peptides that target other community members. Despite the nearly ubiquitous presence of bacteriocin-encoding loci, inhibitory activity has been attributed to only a small fraction of gene clusters. In this study, we characterized a novel locus (the pld locus) in the pathogen Streptococcus pneumoniae that drives the production of a bacteriocin called pneumolancidin, which has broad antimicrobial activity. The locus encodes an unusual tandem array of four inhibitory peptides, three of which are absolutely required for antibacterial activity. The three peptide sequences are similar but appear to play distinct roles in regulation and inhibition. A modification enzyme typically found in loci encoding a class of highly modified bacteriocins called lantibiotics was required for inhibitory activity. The production of pneumolancidin is controlled by a two-component regulatory system that is activated by the accumulation of modified peptides. The locus is located on a mobile element that has been found in many pneumococcal lineages, although not all elements carry the pld genes. Intriguingly, a minimal region containing only the genes required for pneumolancidin immunity was found in several Streptococcus mitis strains. The pneumolancidin-producing strain can inhibit nearly all pneumococci tested to date and provided a competitive advantage in vivo. These peptides not only represent a unique strategy for bacterial competition but also are an important resource to guide the development of new antimicrobials. IMPORTANCE: Successful colonization of a polymicrobial host surface is a prerequisite for the subsequent development of disease for many bacterial pathogens. Bacterial factors that directly inhibit the growth of neighbors may provide an advantage during colonization if the inhibition of competitors outweighs the energy for production. In this work, we found that production of a potent antimicrobial called pneumolancidin conferred a competitive advantage to the pathogen Streptococcus pneumoniae. S. pneumoniae secreting pneumolancidin inhibits a wide array of Gram-positive organisms, including all but one tested pneumococcal strain. The pneumolancidin genetic locus is of particular interest because it encodes three similar modified peptides (lantibiotics), each of which has a distinct role in the function of the locus. Lantibiotics represent a relatively untapped resource for the development of clinically useful antibiotics which are desperately needed. The broad inhibitory activity of pneumolancidin makes it an ideal candidate for further characterization and development.


Assuntos
Bacteriocinas/genética , Bacteriocinas/metabolismo , Loci Gênicos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Sequência de Aminoácidos , Antibiose , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Sequências Repetitivas Dispersas , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Alinhamento de Sequência , Streptococcus mitis/genética
6.
J Vis Exp ; (91): e51876, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25350516

RESUMO

Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.


Assuntos
Bacteriocinas/biossíntese , Streptococcus pneumoniae/metabolismo , Bacteriocinas/genética , Bacteriocinas/imunologia , Percepção de Quorum , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia
7.
Bioorg Med Chem ; 19(18): 5500-6, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21855349

RESUMO

Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations.


Assuntos
Acetais/farmacologia , Lactamas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Acetais/síntese química , Acetais/química , Relação Dose-Resposta a Droga , Lactamas/síntese química , Lactamas/química , Estrutura Molecular , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...