Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Commun Biol ; 6(1): 1130, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938615

RESUMO

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.


Assuntos
RNA Longo não Codificante , Árvores , Florestas , Solo , Temperatura
3.
Sci Rep ; 13(1): 2859, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36801913

RESUMO

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.


Assuntos
Biodiversidade , Ecossistema , Entropia , Florestas , Plantas , Ecologia , Clima Tropical
4.
Plant Methods ; 18(1): 78, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689241

RESUMO

BACKGROUND: Many significant ecosystems, including important non-forest woody ecosystems such as the Cerrado (Brazilian savannah), are under threat from climate change, yet our understanding of how increasing temperatures will impact native vegetation remains limited. Temperature manipulation experiments are important tools for investigating such impacts, but are often constrained by access to power supply and limited to low-stature species, juvenile individuals, or heating of target organs, perhaps not fully revealing how entire or mature individuals and ecosystems will react to higher temperatures. RESULTS: We present a novel, modified open top chamber design for in situ passive heating of whole individuals up to 2.5 m tall (but easily expandable) in remote field environments with strong solar irradiance. We built multiple whole-tree heating structures (WTHSs) in an area of Cerrado around native woody species Davilla elliptica and Erythroxylum suberosum to test the design and its effects on air temperature and humidity, while also studying the physiological responses of E. suberosum to short-term heating. The WTHSs raised internal air temperature by approximately 2.5 °C above ambient during the daytime. This increased to 3.4 °C between 09:00 and 17:00 local time when thermal impact was greatest, and during which time mean internal temperatures corresponded closely with maximum ambient temperatures. Heating was consistent over time and across WTHSs of variable size and shape, and they had minimal effect on humidity. E. suberosum showed no detectable response of photosynthesis or respiration to short-term experimental heating, but some indication of acclimation to natural temperature changes. CONCLUSIONS: Our WTHSs produced a consistent and reproducible level of daytime heating in line with mid-range climate predictions for the Cerrado biome by the end of the century. The whole-tree in situ passive heating design is flexible, low-cost, simple to build using commonly available materials, and minimises negative impacts associated with passive chambers. It could be employed to investigate the high temperature responses of many understudied species in a range of complex non-forest environments with sufficient solar irradiance, providing new and important insights into the possible impacts of our changing climate.

5.
Nat Ecol Evol ; 6(7): 878-889, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577983

RESUMO

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.


Assuntos
Mudança Climática , Ecossistema , Florestas , Árvores , Água
6.
J Environ Sci Health B ; 57(2): 153-163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275045

RESUMO

This study evaluated the long-term effect of biochar application on the sorption and desorption of thiamethoxam in a Haplic Plinthosol. The experiment was conducted in a randomized block design with combination of doses of mineral fertilizer NPK (0 and 300 kg·ha-1 formula 05-25-15) and biochar (0, 16 and 32 Mg ha-1). Deformed soil samples were collected in the field from the 0-0.10 m layer of all plots to determine the sorption and desorption of the thiamethoxam insecticide in the soil; fulvic acid (FA), humic acid (AH) and humin (HUM) carbon contents; and total organic carbon. The Batch slurry method was used to evaluate sorption and desorption. The Freundlich isotherm adequately described thiamethoxam sorption in all treatments. The application of biochar increased the sorption (Kfs) and decreased the desorption (Kfd) of thiamethoxam. The sorption intensity (1/n) showed reduction characteristics as the soil concentration of thiamethoxam increased. Biochar has a sorption effect on the soil through covalent bonds and H-bonds with the insecticide molecules, thereby indirectly increasing the sorption potential in the chemical fractions of the organic matter of soil. The application of 32 Mg ha-1 of biochar significantly reduced thiamethoxam in the soil solution. Altogether, the present study reveals that biochar application in soil is a promising tool for mitigating the contaminant potential of thiamethoxam in subsurface waters.


Assuntos
Inseticidas , Poluentes do Solo , Adsorção , Carbono/química , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise , Tiametoxam
8.
Plant Cell Environ ; 44(7): 2428-2439, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339294

RESUMO

Tropical forests are experiencing unprecedented high-temperature conditions due to climate change that could limit their photosynthetic functions. We studied the high-temperature sensitivity of photosynthesis in a rainforest site in southern Amazonia, where some of the highest temperatures and most rapid warming in the Tropics have been recorded. The quantum yield (Fv /Fm ) of photosystem II was measured in seven dominant tree species using leaf discs exposed to varying levels of heat stress. T50 was calculated as the temperature at which Fv /Fm was half the maximum value. T5 is defined as the breakpoint temperature, at which Fv /Fm decline was initiated. Leaf thermotolerance in the rapidly warming southern Amazonia was the highest recorded for forest tree species globally. T50 and T5 varied between species, with one mid-storey species, Amaioua guianensis, exhibiting particularly high T50 and T5 values. While the T50 values of the species sampled were several degrees above the maximum air temperatures experienced in southern Amazonia, the T5 values of several species are now exceeded under present-day maximum air temperatures.


Assuntos
Mudança Climática , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Termotolerância/fisiologia , Árvores/fisiologia , Brasil , Complexo de Proteína do Fotossistema II/metabolismo , Floresta Úmida
9.
Nat Commun ; 11(1): 5515, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168823

RESUMO

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.


Assuntos
Ecologia , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Brasil , Dióxido de Carbono , Sequestro de Carbono , Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Modelos de Riscos Proporcionais , Fatores de Risco , Clima Tropical
10.
Sci Rep ; 10(1): 10130, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576943

RESUMO

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.


Assuntos
Biodiversidade , Classificação/métodos , Florestas , Rios , Árvores/classificação , Brasil
11.
Ecology ; 101(7): e03052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239762

RESUMO

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Assuntos
Florestas , Madeira , África , Brasil , Ecossistema , Clima Tropical
12.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712699

RESUMO

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Assuntos
Ecossistema , Madeira , Florestas , Filogenia , Clima Tropical
13.
Sci Rep ; 9(1): 13822, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554920

RESUMO

Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.

14.
Glob Chang Biol ; 25(1): 39-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406962

RESUMO

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.


Assuntos
Biodiversidade , Mudança Climática , Florestas , Brasil , Dióxido de Carbono , Ecossistema , Estações do Ano , Árvores/classificação , Árvores/fisiologia , Clima Tropical , Água
16.
Tree Physiol ; 38(12): 1912-1925, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388271

RESUMO

Forest-savanna boundaries extend across large parts of the tropics but the variability of photosynthetic capacity in relation to soil and foliar nutrients across these transition zones is poorly understood. For this reason, we compared photosynthetic capacity (maximum rate of carboxylation of Rubisco at 25 C° (Vcmax25), leaf mass, nitrogen (N), phosphorus (P) and potassium (K) per unit leaf area (LMA, Narea, Parea and Karea, respectively), in relation to respective soil nutrients from 89 species at seven sites along forest-savanna ecotones in Ghana and Brazil. Contrary to our expectations, edaphic conditions were not reflected in foliar nutrient concentrations but LMA was slightly higher in lower fertility soils. Overall, each vegetation type within the ecotones demonstrated idiosyncratic and generally weak relationships between Vcmax25 and Narea, Parea and Karea. Species varied significantly in their Vcmax25 ↔ Narea relationship due to reduced investment of total Narea in photosynthetic machinery with increasing LMA. We suggest that studied species in the forest-savanna ecotones do not maximize Vcmax25 per given total Narea due to adaptation to intermittent water availability. Our findings have implications for global modeling of Vcmax25 and forest-savanna ecotone productivity.


Assuntos
Florestas , Fotossíntese , Folhas de Planta/metabolismo , Solo , Brasil , Gana , Pradaria , Nutrientes
17.
Ecol Evol ; 6(16): 5674-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547346

RESUMO

Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter- and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330-m elevation gradient in Peru, and in sun leaves across a forest-savanna vegetation gradient in Brazil. We also compared LMA variance ratios (T-statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community-weighted LMA increased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation in LMA was species turnover. Variation in LMA at the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation in LMA indicate that biodiversity in species rich tropical assemblages may be structured by differential niche-based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.

18.
J Environ Manage ; 169: 27-33, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26716573

RESUMO

The objective of this research was to assess the emission of nitrous oxide (N2O) from soil amended with biochar in the culture of upland rice. The experiment was conducted in the field in a Cerrado Haplic Plinthosol under randomized block experimental design. The treatments consisted of fertilization with 100 kg N ha(-1) split into two applications, 60% at sowing and 40% at 45 days after crop emergence, combined with four doses of biochar (0, 8, 16 and 32 Mg ha(-1)), with four replications. The application of N and the emission of N2O, moisture retention and soil temperature, respiration (C-CO2), microbial biomass carbon in the soil (C-SMB), total nitrogen (TN), pH and agronomic efficiency in N use (AENu) were evaluated five years after the application of biochar. There was a significant correlation of the application of biochar with moisture retention (r = 0.94**), N2O emission (r = 0.86**) and soil pH (r = 0.65*), and N2O emissions showed a positive correlation (p < 0.05) with soil moisture (r = 0.77**) and pH (r = 0.66*). Thus the highest N2O emissions were observed shortly after N fertilization and in the treatments with 32 Mg ha(-1) of biochar. Despite the higher N2O emissions from the application of 32 Mg ha(-1) of biochar, the emission factor was lower (0.81%) than the maximum recommended by the IPCC. The higher N2O emissions with application of biochar are offset by more efficient use of N and consequently the possibility of reduction of applied doses.


Assuntos
Carvão Vegetal , Óxido Nitroso/análise , Solo/química , Biomassa , Carbono/análise , Desnitrificação , Nitrificação , Nitrogênio/metabolismo , Oryza/metabolismo
19.
Biosci. j. (Online) ; 31(5): 1519-1529, sept./oct. 2015.
Artigo em Inglês | LILACS | ID: biblio-964955

RESUMO

The dynamics of the natural process of recuperation of the structure and diversity of native vegetation following anthropogenic disturbance has been the subject of a great deal of controversy in restoration ecology research. The present study evaluates the natural regeneration of savanna forest (cerradão) 32 and 36 years after the clearcutting of the vegetation. We compared species diversity, and the structure and dynamics of the vegetation in two communities, one representing preserved cerradão (PC), and the other, the regenerating cerradão (RC), which was clearcut in 1976. Surveys were conducted in 2008 and 2012, 32 and 36 years after clear-cutting, respectively. In 2008, we demarcated 81 permanent 10 m x 10 m plots, 50 in the RC and 31 in the PC, and measured all live plants with a diameter at soil level > 5 cm. In 2012, the plots were resampled, including the original plants and all the recruits. The species were classified as specialists in savanna (SA) or forest habitat (FO), or as generalists (SA/FO). The RC presented the highest species richness and diversity, density, annual increment, and mortality rates. However, no significant differences were found between communities in the distribution of specialist or generalist species, or between years (2008 and 2012) in basal area or recruitment rates. While the species composition of the two communities is highly similar, the RC was characterized by a higher frequency of SA species, and was more similar to nearby savanna communities (cerrado sensu stricto). Trees in the RC were smaller and suffered higher rates of mortality than those in the PC, but also higher annual increments. While the RC demonstrated a high degree of resilience following clear-cutting, it was still found to be at an intermediate stage of succession, even after almost four decades, indicating that regeneration is a slow process.


A dinâmica de recuperação da diversidade e estrutura da vegetação nativa, a partir de processos naturais, após distúrbios antrópicos, tem sido objeto de controvérsias em estudos de ecologia da restauração. Nosso objetivo foi avaliar a regeneração natural de cerradão em 32 e 36 anos, após corte raso da vegetação. Comparamos os parâmetros florísticos e estruturais e a dinâmica da vegetação (entre 2008 e 2012) de duas comunidades de cerradão, sendo uma de cerradão preservado (CP) e outra em regeneração desde 1976 (CR). Demarcamos em 2008, 81 parcelas permanentes (10 x 10 m), sendo 50 no CR e 31 no CP e medimos todas as plantas vivas com diâmetro a altura do solo > 5 cm. Em 2012, reamostramos todas as plantas e incluímos os recrutas. Classificamos as espécies como especialistas em habitats savânicos (SA), florestal (FO) ou generalistas em habitats savânicos e florestais (SA/FO). O CR apresentou maior riqueza e diversidade de espécies, densidade de indivíduos, incremento periódico anual e taxa de mortalidade. Porém, as duas áreas não apresentaram diferenças na distribuição das espécies entre os habitats (SA, FO, SA/FO) e área basal (em 2008 e 2012) e taxa de recrutamento (entre 2008 e 2012). Apesar do CR e CP apresentarem elevada similaridade florística, o CR apresentou maior frequência de indivíduos de espécies com habitat SA bem como maior similaridade com duas outras comunidades savânicas (cerrado sentido restrito) próximas. Ainda, o CR possui indivíduos com menores diâmetros e consequentemente maiores taxas de mortalidade e incremento periódico anual. Apesar da resiliência do cerradão em relação ao corte raso esse ainda se encontra em estágio intermediário de sucessão, mesmo quase quatro décadas após o distúrbio, indicando que a regeneração é um processo lento.


Assuntos
Plantas , Pradaria , Ecologia , Recuperação e Remediação Ambiental
20.
Nat Commun ; 6: 6857, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25919449

RESUMO

While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...