Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1253805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809071

RESUMO

Introduction: Stilbenoid compounds have been described to have anti-inflammatory properties in animal models in vivo, and have been shown to inhibit Ca2+-influx through the transient receptor potential ankyrin 1 (TrpA1). Methods: To study how stilbenoid compounds affect inflammatory signaling in vivo, we have utilized the fruit fly, Drosophila melanogaster, as a model system. To induce intestinal inflammation in the fly, we have fed flies with the intestinal irritant dextran sodium sulphate (DSS). Results: We found that DSS induces severe changes in the bacteriome of the Drosophila intestine, and that this dysbiosis causes activation of the NF-κB transcription factor Relish. We have taken advantage of the DSS-model to study the anti-inflammatory properties of the stilbenoid compounds pinosylvin (PS) and pinosylvin monomethyl ether (PSMME). With the help of in vivo approaches, we have identified PS and PSMME to be transient receptor ankyrin 1 (TrpA1)-dependent antagonists of NF-κB-mediated intestinal immune responses in Drosophila. We have also computationally predicted the putative antagonist binding sites of these compounds at Drosophila TrpA1. Discussion: Taken together, we show that the stilbenoids PS and PSMME have anti-inflammatory properties in vivo in the intestine and can be used to alleviate chemically induced intestinal inflammation in Drosophila.


Assuntos
NF-kappa B , Estilbenos , Animais , NF-kappa B/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Anquirinas , Intestinos , Estilbenos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122900, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37244028

RESUMO

Herein, the interaction mechanism of new methylene blue (NMB) with human serum albumin (HSA) and bovine serum albumin (BSA) was carefully investigated both experimentally and conceptually, employing experimental and insilico analysis. The steady-state emission spectral studies showed that the emission intensity of HSA and BSA was quenched significantly by NMB. The findings of the Stern-Volmer and double logarithmic plot revealed that the observed emission quenching process was through a static quenching mechanism and the measured binding constant values (Kb) for HSA-NMB and BSA-NMB are 2.766 and 1.187 × 105 dm3 mol-1 respectively. The time-resolved fluorescence lifetime measurement and UV-vis absorption investigation further verify the complex formation between NMB and HSA/BSA. The assessment of thermodynamic parameters disclosed the binding process was spontaneous driven by hydrogen bonds (H-bond) and van der Waals interactions, which contributed a significant role in the complexation. Moreover, the secondary structural conformation and microenvironment of HSA/BSA were modified in the presence of NMB, as evidenced by circular dichroism and synchronous fluorescence data. Molecular docking study predicted a plausible binding mode of NMB inside the binding pocket of HSA and BSA. These results demonstrated that the stabilized NMB is found at the Subdomain IIA (site I) of both the proteins and the results were correlated well with the competitive binding assay. Additionally, the principal components analysis revealed less variation of docked poses for HSA, while, more dispersed docked poses were observed for the BSA model. This also highlights the effects of docking towards a modeled protein (BSA). Molecular dynamic (MD) simulation based binding free energy (ΔGmmgbsa) estimation obtained at 298, 303, 308 and 313 K, were in good agreement with our experimental (ΔGbind) values.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica/química , Simulação de Acoplamento Molecular , Ligação Proteica , Espectrometria de Fluorescência , Sítios de Ligação , Albumina Sérica Humana/química , Soroalbumina Bovina/química , Termodinâmica , Dicroísmo Circular
3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047286

RESUMO

The self-association of amylogenic proteins to the fibril form is considered a pivotal factor in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). PD causes unintended or uncontrollable movements in its common symptoms. α-synuclein is the major cause of PD development and thus has been the main target of numerous studies to suppress and sequester its expression or effectively degrade it. Nonetheless, to date, there are no efficient and proven ways to prevent pathological protein aggregation. Recent investigations proposed applying an external electric field to interrupt the fibrils. This method is a non-invasive approach that has a certain benefit over others. We performed molecular dynamics (MD) simulations by applying an electric field on highly toxic fibrils of α-synuclein to gain a molecular-level insight into fibril disruption mechanisms. The results revealed that the applied external electric field induces substantial changes in the conformation of the α-synuclein fibrils. Furthermore, we show the threshold value for electric field strength required to completely disrupt the α-synuclein fibrils by opening the hydrophobic core of the fibril. Thus, our findings might serve as a valuable foundation to better understand molecular-level mechanisms of the α-synuclein fibrils disaggregation process under an applied external electric field.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Simulação de Dinâmica Molecular , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/complicações , Amiloide/metabolismo
4.
Biomed Pharmacother ; 160: 114320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36716660

RESUMO

Glioblastoma Multiforme (GBM) is known to be by far the most aggressive brain tumor to affect adults. The median survival rate of GBM patient's is < 15 months, while the GBM cells aggressively develop resistance to chemo- and radiotherapy with their self-renewal capacity which suggests the pressing need to develop novel preventative measures. We have recently proved that GPR17 -an orphan G protein-coupled receptor- is highly expressed on the GBM cell surface and it has a vital role to play in the disease progression. Despite the progress made on GBM downregulation, there still remain difficulties in developing a promising modulator for GPR17, till date. Here, we have performed robust virtual screening combined with biased-force pulling molecular dynamic (MD) simulations to predict high-affinity GPR17 modulators followed by experimental validation. Initially, the database containing 1379 FDA-approved drugs were screened against the orthosteric binding pocket of the GPR17. The external bias-potentials were then applied to the screened hits during the MD simulations which enabled to predict a spectrum of rupture peak force values that were used to select four approved drugs -ZINC000003792417 (Sacubitril), ZINC000014210457 (Victrelis), ZINC000001536109 (Pralatrexate) and ZINC000003925861 (Vorapaxar)- as top hits. The hits selected turns out to demonstrate unique dissociation pathways, interaction pattern, and change in polar network over time. Subsequently the selected hits with GPR17 were measured by inhibiting the forskolin-stimulated cAMP accumulation in GBM cell lines, LN229 and SNB19. The ex vivo validations shows that Sacubitril drug can act as a full agonist, while Vorapaxar functions as a partial agonist for GPR17. The pEC50 of Sacubitril was identified as 4.841 and 4.661 for LN229 and SNB19, respectively. Small interference of the RNA (siRNA)- silenced the GPR17 to further validate the targeted binding of Sacubitril with GPR17. In the current investigation, we have identified new repurposable GPR17 specific drugs which are likely to increase the opportunity to treat orphan deadly diseases.


Assuntos
Lactonas , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Piridinas
5.
Cell Chem Biol ; 29(12): 1694-1708.e10, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493759

RESUMO

Allosteric coupling between the DNA binding site to the NAD+-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD+ mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors. Here we identify the phthalazinone inhibitor AZ0108 as a type I inhibitor. Unlike the structurally related inhibitor olaparib, AZ0108 induces replication stress in tumorigenic cells. Synthesis of analogs of AZ0108 revealed features of AZ0108 that are required for type I inhibition. One analog, Pip6, showed similar type I inhibition of PARP-1 but was ∼90-fold more cytotoxic than AZ0108. Washout experiments suggest that the enhanced cytotoxicity of Pip6 compared with AZ0108 is due to prolonged target residence time on PARP-1. Pip6 represents a new class of PARP-1 inhibitors that may have unique anticancer properties.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Regulação Alostérica , NAD/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação
6.
J Chem Inf Model ; 62(23): 6133-6147, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36398926

RESUMO

Recently, studies on the interactions between ovalbumin (OVA) and polyphenols have received a great deal of interest. This study explored the conformational changes and the interaction mechanism of the binding between OVA and chlorogenic acid (CGA) isomers such as 3,4-dicaffeoylquinic acids (3,4-diCQA), 4,5-dicaffeoylquinic acids (4,5-diCQA), and 3,5-dicaffeoylquinic acids (3,5-diCQA) using multispectroscopic and in silico analyses. The emission spectra show that the diCQAs caused strong quenching of OVA fluorescence under different temperatures through a static quenching mechanism with hydrogen bond (H-bond) and van der Waals (vdW) interactions. The values of binding constants (OVA-3,4-diCQA = 6.123 × 105, OVA-3,5-diCQA = 2.485 × 105, OVA-4,5-diCQA = 4.698 × 105 dm3 mol-1 at 298 K) suggested that diCQAs had a strong binding affinity toward OVA, among which OVA-3,4-diCQA exhibits higher binding constant. The results of UV-vis absorption and synchronous fluorescence indicated that the binding of all three diCQAs to OVA induced conformational and micro-environmental changes in the protein. The findings of molecular modeling further validate the significant role of vdW force and H-bond interactions in ensuring the stable binding of OVA-diCQA complexes. Temperature-dependent molecular dynamics simulation studies allow estimation of the individual components that contribute to the total bound free energy value, which allows evaluation of the nature of the interactions involved. This research can provide information for future investigations on food proteins' physicochemical stability and CGA bioavailability in vitro or in vivo.


Assuntos
Ácido Clorogênico , Ácido Quínico , Ovalbumina , Ácido Quínico/química , Ácido Quínico/farmacologia , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Fluorescência , Ligação Proteica , Sítios de Ligação , Simulação de Acoplamento Molecular , Termodinâmica
7.
Curr Mol Pharmacol ; 15(2): 338-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33881978

RESUMO

BACKGROUND: Glioblastoma Multiforme (GBM) is one of the most heterogeneous primary brain tumors with high mortality. In spite of the current therapeutic approaches, the survival rate remains poor, with death occurring within 12 to 15 months after the preliminary diagnosis. This warrants the need for an effective treatment modality. The Wnt/ß-catenin pathway is presumably the most noteworthy pathway upregulated in almost 80% of GBM cases, contributing to tumor initiation, progression, and survival. Therefore, therapeutic strategies targeting key components of the Wnt/ß-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate the Wnt/ß-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors, including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemoresistance in GBM. OBJECTIVE: In this context, by employing computational tools, an attempt has been made to find out the novel combinations against the Wnt/ß-catenin signalling pathway. METHODS: We have explored the binding interactions of three conventional drugs - namely temozolomide, metformin and chloroquine - along with three natural compounds, viz. epigallocatechin gallate, naringenin and phloroglucinol, on the major receptors of Wnt/ß-catenin signalling. RESULTS: It was noted that all the experimental compounds showed profound interaction with two major receptors of the Wnt/ß-catenin pathway. CONCLUSION: To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the aforementioned drugs with the Wnt/ß-catenin signalling in silico, and this will putatively open up new avenues for combination therapies in GBM treatment.


Assuntos
Glioblastoma , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Via de Sinalização Wnt , beta Catenina/metabolismo
8.
J Biomol Struct Dyn ; 40(14): 6619-6633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33627053

RESUMO

The binding interactions of bioactive compounds with proteins are of great importance in the food, biochemistry and pharmaceutical fields. Herein, the binding mechanisms between 5-O-caffeoylquinic acid (5-CQA) and ovalbumin (OVA) were investigated by multi-spectroscopic studies combined with docking and molecular dynamics (MD) simulations. The emission intensity of OVA was quenched by 5-CQA and Stern-Volmer analysis indicated the existence of a static suppression by OVA-5-CQA complex formation. Thermodynamic parameters revealed that the formation of complex was spontaneously driven by electrostatic and hydrogen-bonding interactions. Circle dichroism analyses showed that 5-CQA decreased the α-helix content of OVA structure from 58.05% to 54.32% upon increased OVA:5-CQA ratio to 1:3. Molecular docking results suggested 5-CQA forms hydrogen bond interactions with N88, T91, K92, N94, S98, F99, S100 and L101 residues of OVA. The experimental values were in good agreement with the calculated binding free energy values obtained by MD simulation (R2 = 0.89).Communicated by Ramaswamy H. Sarma.


Assuntos
Ácido Clorogênico , Simulação de Dinâmica Molecular , Sítios de Ligação , Dicroísmo Circular , Simulação de Acoplamento Molecular , Ovalbumina/química , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
9.
J Chem Inf Model ; 61(12): 6053-6065, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34842417

RESUMO

The main protease (Mpro) is a key enzyme responsible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication that causes the spread of the global pandemic novel coronavirus (nCOVID-19) infection. In the present study, multiple computational approaches such as docking, long-range molecular dynamics (MD) simulations, and binding free-energy (BFE) estimation techniques were employed to investigate the mechanistic basis of the high-affinity inhibitors─GC-376, Calpain XII, and Calpain II (hereafter Calpain as Cal) from the literature─binding to Mpro. Redocking GC-376 and docking Cal XII and Cal II inhibitors to Mpro were able to reproduce all crucial interactions like the X-ray conformation. Subsequently, the apo (ligand-free) and three holo (ligand-bound) complexes were subjected to extensive MD simulations, which revealed that the ligand binding did not alter the overall Mpro structural features, whereas the heatmap analysis showed that the residues located in subsites S1 and S2, the catalytic dyad, and the 45TSEDMLN51 loop in Mpro exhibit a conformational deviation. Moreover, the BFE estimation method was used to elucidate the crucial thermodynamic properties, which revealed that Coulomb, solvation surface accessibility (Solv_SA), and lipophilic components contributed significant energies for complex formation. The decomposition of the total BFE to per-residue showed that H41, H163, M165, Q166, and Q189 residues contributed maximum energies. The overall results from the current investigation might be valuable for designing novel anti-Mpro inhibitors.


Assuntos
COVID-19 , Inibidores de Proteases , Carbonatos , Proteases 3C de Coronavírus , Humanos , Leucina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Ácidos Sulfônicos
10.
J Chem Inf Model ; 61(7): 3442-3452, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34242503

RESUMO

G-protein coupled receptors (GPCRs) sense a wide variety of stimuli, including lipids, and transduce signals to the intracellular environment to exert various physiological responses. However, the structural features of GPCRs responsible for detecting and triggering responses to distinct lipid ligands have only recently begun to be revealed. 14,15-epoxyeicosatrienoic acid (14,15-EET) is one such lipid mediator that plays an essential role in the vascular system, displaying both vasodilatory and anti-inflammatory properties. We recently reported multiple low-affinity 14,15-EET-binding GPCRs, but the mechanism by which these receptors sense 14,15-EET remains unclear. Here, we have taken a combined computational and experimental approach to identify and confirm critical residues and properties within the lipid-binding pocket. Furthermore, we generated mutants to engineer selected GPCR-predicted binding sites to either confer or abolish 14,15-EET-induced signaling. Our structure-function analyses indicate that hydrophobic and positively charged residues of the receptor-binding pocket are prerequisites for recognizing lipid ligands such as 14,15-EET and possibly other eicosanoids.


Assuntos
Lipídeos , Receptores Acoplados a Proteínas G , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
11.
Biomolecules ; 10(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731448

RESUMO

Mcl1 is a primary member of the Bcl-2 family-anti-apoptotic proteins (AAP)-that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1-PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van-der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1-PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Desenho de Fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Termodinâmica
12.
Int J Biol Macromol ; 158: 364-374, 2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32376253

RESUMO

Mcl1 is an important anti-apoptotic member of the Bcl2 family proteins that are upregulated in several cancer malignancies. The canonical binding groove (CBG) located at the surface of Mcl1 exhibits a critical role in binding partners selectively via the BH3-domain of pro-apoptotic Bcl2 family members that trigger the downregulation of Mcl1 function. There are several crystal structures of point-mutated pro-apoptotic Bim peptides in complex with Mcl1. However, the mechanistic effects of such point-mutations towards peptide binding and complex stability still remain unexplored. Here, the effects of the reported point mutations in Bim peptides and their binding mechanisms to Mcl1 were computationally evaluated using atomistic-level steered molecular dynamics (SMD) simulations. A range of external-forces and constant-velocities were applied to the Bim peptides to uncover the mechanistic basis of peptide dissociation from the CBG of Mcl1. Although the peptides showed similarities in their dissociation pathways, the peak rupture forces varied significantly. According to simulations results, the disruption of the conserved polar contacts at the complex interface causes a sequential release of the peptides from the CBG of Mcl1. Overall, the results obtained from the current study may provide valuable insights for the development of novel anti-cancer peptide-inhibitors that can downregulate Mcl1's function.

13.
J Biomol Struct Dyn ; 37(8): 1992-2003, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29745292

RESUMO

Myeloid cell leukemia 1 (Mcl1), is an antiapoptotic member of the Bcl-2 family proteins, has gained considerable importance due to its overexpression activity prevents the oncogenic cells to undergo apoptosis. This overexpression activity of Mcl1 eventually develops strong resistance to a wide variety of anticancer agents. Therefore, designing novel inhibitors with potentials to elicit higher binding affinity and specificity to inhibit Mcl1 activity is of greater importance. Thus, Mcl1 acts as an attractive cancer target. Despite recent experimental advancement in the identification and characterization of benzothiophene and benzofuran scaffold-merged compounds, the molecular mechanisms of their binding to Mcl1 are yet to be explored. The current study demonstrates an integrated approach - pharmacophore-based 3D-QSAR, docking, molecular dynamics (MD) simulation and free-energy estimation - to access the precise and comprehensive effects of current inhibitors targeting Mcl1 together with its known activity values. The pharmacophore - ANRRR.240 - based 3D-QSAR model from the current study provided high confidence (R2=0.9154, Q2=0.8736 and RMSE = 0.3533) values. Furthermore, the docking correctly predicted the binding mode of highly active compound 42. Additionally, the MD simulation for docked complex under explicit-solvent conditions together with free-energy estimation exhibited stable interaction and binding strength over the time period. Also, the decomposition analysis revealed potential energy contributing residues - M231, M250, V253, R265, L267 and F270 - to the complex stability. Overall, the current investigation might serve as a valuable insight, either to (i) improve the binding affinity of the current compounds or (ii) discover new generation anticancer agents that can effectively downregulate Mcl1 activity. Communicated by Ramaswamy H. Sarma.


Assuntos
Apoptose , Benzofuranos/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Tiofenos/química , Análise dos Mínimos Quadrados , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
14.
J Biomol Struct Dyn ; 37(2): 307-320, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29322868

RESUMO

Organophosphate compounds (OPC) have become the primary choice as insecticides and are widely used across the world. Additionally, OPCs were also commonly used as a chemical warfare agent that triggers a great challenge to public safety. Exposure of OPCs to human causes immediate excitation of cholinergic neurotransmission through transient elevation of synaptic acetylcholine (ACh) levels and accumulations. Likewise, prolonged exposure of OPCs can affect the processes in immune response, carbohydrate metabolism, cardiovascular toxicity, and several others. Studies revealed that the toxicity of OPCs was provoked by inhibition of acetylcholinesterase (AChE). Therefore, combined in silico approaches - pharmacophore-based 3D-QSAR model; docking and Molecular Dynamics (MD) - were used to assess the precise and comprehensive effects of series of known OP-derived compounds together with its -log LD50 values. The selected five-featured pharmacophore model - AAHHR.61 - displayed the highest correlation (R2 = .9166), cross-validated coefficient (Q2 = .8221), F = 63.2, Pearson-R = .9615 with low RMSE = .2621 values obtained using five component PLS factors. Subsequently, the well-validated model was then used as a 3D query to search novel OPCs using a high-throughput virtual screening technique. Simultaneously, the docking studies predicted the binding pose of the most active OPC in the MdAChE binding pocket. Additionally, the stability of docking was verified using MD simulation. The results revealed that OP22 and predicted lead compounds bound tightly to S315 of MdAChE through potential hydrogen bond interaction over time. Overall, this study might provide valuable insight into binding mode of OPCs and hit compounds to inhibit AChE in housefly.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Moscas Domésticas/enzimologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Organofosfatos/química , Animais , Sítios de Ligação , Inibidores da Colinesterase/farmacologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Organofosfatos/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
15.
Sci Rep ; 9(1): 20295, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889069

RESUMO

The vast majority of cervical and 75% of oropharyngeal carcinomas are triggered by infection with a type of high-risk oncogenic human papillomavirus (HPV). It is well-known that E6 and E7 oncoproteins are critical for viral-induced cancer, and hence, they represent valuable targets for therapeutic intervention in HPV-mediated cancers. Our earlier research on the cembranoid, anisomelic acid (AA) showed that, AA has the potential to induce apoptosis in HPV cells by the depletion of E6 and E7 oncoproteins. The present study describes the structure-activity relationship and the evaluation of synthetic AA like compounds, i.e simplified cembranoid-like structures, as HPV inhibitors against some papilloma cell lines. Both from experimental and computational results, we observed that these compounds induced apoptosis by the same E6/E7-based mechanism as AA, but at earlier time points, thus being far more effective than AA. Further, the data indicated that only part of the structure of AA is required for the molecular action. Based on these results, we identified some novel and potential compounds for specific treatment of HPV-associated carcinomas.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Carcinoma/etiologia , Técnicas de Química Sintética , Diterpenos/síntese química , Diterpenos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Infecções por Papillomavirus/complicações , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Diterpenos/química , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oncogenes , Infecções por Papillomavirus/virologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biochemistry ; 57(7): 1249-1261, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29345906

RESUMO

Myeloid cell leukemia 1 (Mcl1) is an antiapoptotic protein that plays central role in apoptosis regulation. Also, Mcl1 has the potency to resist apoptotic cues resulting in up-regulation and cancer cell protection. A molecular probe that has the potential to specifically target Mcl1 and thereby provoke its down-regulatory activity is very essential. The aim of the current study is to probe the internal conformational dynamics of protein motions and potential binding mechanism in response to a series of picomolar range Mcl1 inhibitors using explicit-solvent molecular dynamics (MD) simulations. Subsequently, domain cross-correlation and principal component analysis was performed on the snapshots obtained from the MD simulations. Our results showed significant differences in the internal conformational dynamics of Mcl1 with respect to binding affinity values of inhibitors. Further, the binding free energy estimation, using three different samples, was performed on the MD simulations and revealed that the predicted energies (ΔGmmgbsa) were in good correlation with the experimental values (ΔGexpt). Also, the energies obtained using all sampling models were efficiently ranked. Subsequently, the decomposition energy analysis highlighted the major energy-contributing residues at the Mcl1 binding pocket. Computational alanine scanning performed on high energy-contributing residues predicted the hot spot residues. The dihedral angle analysis using MD snapshots on the predicted hot spot residue exhibited consistency in side chain conformational motion that ultimately led to strong binding affinity values. The findings from the present study might provide valuable guidelines for the design of novel Mcl1 inhibitors that might significantly improve the specificity for new-generation chemotherapeutic agents.


Assuntos
Descoberta de Drogas , Indóis/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Indóis/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Ligação Proteica , Termodinâmica
17.
J Biomol Struct Dyn ; 36(10): 2654-2667, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28793831

RESUMO

The Bcl-2 family proteins are the central regulators of apoptosis. Due to its predominant role in cancer progression, the Bcl-2 family proteins act as attractive therapeutic targets. Recently, molecular series of Benzothiazole Hydrazone (BH) inhibitors that exhibits drug-likeness characteristics, which selectively targets Bcl-xL have been reported. In the present study, docking was used to explore the plausible binding mode of the highly active BH inhibitor with Bcl-xL; and Molecular Dynamics (MD) simulation was applied to investigate the stability of predicted conformation over time. Furthermore, the molecular properties of the series of BH inhibitors were extensively investigated by pharmacophore based 3D-QSAR model. The docking correctly predicted the binding mode of the inhibitor inside the Bcl-xL hydrophobic groove, whereas the MD-based free energy calculation exhibited the binding strength of the complex over the time period. Furthermore, the residue decomposition analysis revealed the major energy contributing residues - F105, L108, L130, N136, and R139 - involved in complex stability. Additionally, a six-featured pharmacophore model - AAADHR.89 - was developed using the series of BH inhibitors that exhibited high survival score. The statistically significant 3D-QSAR model exhibited high correlation co-efficient (R2 = .9666) and cross validation co-efficient (Q2 = .9015) values obtained from PLS regression analysis. The results obtained from the current investigation might provide valuable insights for rational drug design of Bcl-xL inhibitor synthesis.


Assuntos
Apoptose , Benzotiazóis/química , Benzotiazóis/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Proteína bcl-X/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Elétrons , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Análise dos Mínimos Quadrados , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Termodinâmica
18.
J Biomol Struct Dyn ; 36(6): 1637-1648, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28511583

RESUMO

B-cell lymphoma 2 (Bcl-2) family proteins are the central regulators of apoptosis, functioning via mitochondrial outer membrane permeabilization. The family members are involved in several stages of apoptosis regulation. The overexpression of the anti-apoptotic proteins leads to several cancer pathological conditions. This overexpression is modulated or inhibited by heterodimerization of pro-apoptotic BH3 domain or BH3-only peptides to the hydrophobic groove present at the surface of anti-apoptotic proteins. Additionally, the heterodimerization displayed differences in binding affinity profile among the pro-apoptotic peptides binding to anti-apoptotic proteins. In light of discovering the novel peptide/drug molecules that contain the potential to inhibit specific anti-apoptotic protein, it is necessary to understand the molecular basis of recognition between the protein and its binding partner (peptide or ligand) along with its binding energies. Therefore, the present work focused on deciphering the molecular basis of recognition between pro-apoptotic Bak peptide binding to different anti-apoptotic (Bcl-xL, Bfl-1, Bcl-W, Mcl-1, and Bcl-2) proteins using advanced Molecular Dynamics (MD) approach such as Molecular Mechanics-Generalized Born Solvent Accessible. The results from our investigation revealed that the predicted binding free energies showed excellent correlation with the experimental values (r2 = .95). The electrostatic (ΔGele) contributions are the major component that drives the interaction between Bak peptides and different anti-apoptotic peptides. Additionally, van der Waals (ΔGvdw) energies also play an indispensible role in determining the binding free energy. Furthermore, the decomposition analysis highlighted the comprehensive information about the energy contributions of hotspot residues involved in stabilizing the interaction between Bak peptide and different anti-apoptotic proteins.


Assuntos
Proteínas Reguladoras de Apoptose/química , Apoptose/fisiologia , Peptídeos/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2/química
19.
J Biomol Struct Dyn ; 35(16): 3507-3521, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844507

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a promising antimicrobial target involved in the folate biosynthesis pathway. Although, the results from crystallographic studies of HPPK have attracted a great interest in the design of novel HPPK inhibitors, the mechanism of action of HPPK due to inhibitor binding remains questionable. Recently, mercaptoguanine derivatives were reported to inhibit the pyrophosphoryl transfer mechanism of Staphylococcus aureus HPPK (SaHPPK). The present study is an attempt to understand the SaHPPK-inhibitors binding mechanism and to highlight the key residues that possibly involve in the complex formation. To decipher these questions, we used the state-of-the-art advanced insilico approach such as molecular docking, molecular dynamics (MD), molecular mechanics-generalized Born surface area approach. Domain cross correlation and principle component analysis were applied to the snapshots obtained from MD revealed that the compounds with high binding affinity stabilize the conformational dynamics of SaHPPK. The binding free energy estimation showed that the van der Waals and electrostatic interactions played a vital role for the binding mechanism. Additionally, the predicted binding free energy was in good agreement with the experimental values (R2 = .78). Moreover, the free energy decomposition on per-residue confirms the key residues that significantly contribute to the complex formation. These results are expected to be useful for rational design of novel SaHPPK inhibitors.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Difosfotransferases/química , Guanina/análogos & derivados , Mercaptopurina/análogos & derivados , Staphylococcus aureus/química , Motivos de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Difosfotransferases/antagonistas & inibidores , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
20.
J Chem Inf Model ; 56(12): 2401-2412, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024399

RESUMO

Anisomelic acid (AA) is a macrocyclic cembranolide compound extracted from Anisomeles herbal species. Recently, we have shown that AA possesses both anticancer and antiviral activity. However, to date, the plasma protein binding properties of AA are unknown. Here, we describe the molecular interactions of AA with two serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA), adopting multiple physicochemical methods. Besides, molecular docking and dynamics simulations were performed to predict the interaction mode and the dynamic behavior of AA with HSA and BSA. The experimental results revealed that hydrophobic forces play a significant part in the interaction of AA to HSA and BSA. The outcomes of the principal components analysis (PCA) of the poses based on root-mean-squared distances showed less variation in AA-HSA, opposed to what is seen for BSA-AA. Furthermore, binding free energies estimated for AA-HSA and AA-BSA complexes at different temperatures (298, 303, 308, and 313 K) based on molecular mechanics-generalized Born surface area (MMGBSA) approaches were well correlated with our experimental results.


Assuntos
Diterpenos/metabolismo , Soroalbumina Bovina/metabolismo , Albumina Sérica/metabolismo , Animais , Bovinos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...