Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 17(1): 94, 2018 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-29908566

RESUMO

BACKGROUND: α-D-Glucosylglycerol (αGG) has beneficial functions as a moisturizing agent in cosmetics and potential as a health food material, and therapeutic agent. αGG serves as compatible solute in various halotolerant cyanobacteria such as Synechocystis sp. PCC 6803, which synthesizes αGG in a two-step reaction: The enzymatic condensation of ADP-glucose and glycerol 3-phosphate by GG-phosphate synthase (GGPS) is followed by the dephosphorylation of the intermediate by the GG-phosphate phosphatase (GGPP). The Gram-positive Corynebacterium glutamicum, an industrial workhorse for amino acid production, does not utilize αGG as a substrate and was therefore chosen for the development of a heterologous microbial production platform for αGG. RESULTS: Plasmid-bound expression of ggpS and ggpP from Synechocystis sp. PCC 6803 enabled αGG synthesis exclusively in osmotically stressed cells of C. glutamicum (pEKEx2-ggpSP), which is probably due to the unique intrinsic control mechanism of GGPS activity in response to intracellular ion concentrations. C. glutamicum was then engineered to optimize precursor supply for αGG production: The precursor for αGG synthesis ADP-glucose gets metabolized by both the glgA encoded glycogen synthase and the otsA encoded trehalose-6-phosphate synthase. Upon deletion of both genes the αGG concentration in culture supernatants was increased from 0.5 mM in C. glutamicum (pEKEx3-ggpSP) to 2.9 mM in C. glutamicum ΔotsA IMglgA (pEKEx3-ggpSP). Upon nitrogen limitation, which inhibits synthesis of amino acids as compatible solutes, C. glutamicum ΔotsA IMglgA (pEKEx3-ggpSP) produced more than 10 mM αGG (about 2 g L-1). CONCLUSIONS: Corynebacterium glutamicum can be engineered as efficient platform for the production of the compatible solute αGG. Redirection of carbon flux towards αGG synthesis by elimination of the competing pathways for glycogen and trehalose synthesis as well as optimization of nitrogen supply is an efficient strategy to further optimize production of αGG.


Assuntos
Corynebacterium glutamicum/metabolismo , Glucosídeos/metabolismo , Glicogênio/metabolismo , Engenharia Metabólica/métodos , Trealose/metabolismo
2.
ACS Synth Biol ; 7(1): 132-144, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28803482

RESUMO

Targeted top-down strategies for genome reduction are considered to have a high potential for providing robust basic strains for synthetic biology and industrial biotechnology. Recently, we created a library of 26 genome-reduced strains of Corynebacterium glutamicum carrying broad deletions in single gene clusters and showing wild-type-like biological fitness. Here, we proceeded with combinatorial deletions of these irrelevant gene clusters in two parallel orders, and the resulting library of 28 strains was characterized under various environmental conditions. The final chassis strain C1* carries a genome reduction of 13.4% (412 deleted genes) and shows wild-type-like growth behavior in defined medium with d-glucose as carbon and energy source. Moreover, C1* proves to be robust against several stresses (including oxygen limitation) and shows long-term growth stability under defined and complex medium conditions. In addition to providing a novel prokaryotic chassis strain, our results comprise a large strain library and a revised genome annotation list, which will be valuable sources for future systemic studies of C. glutamicum.


Assuntos
Biotecnologia/métodos , Corynebacterium glutamicum/genética , Genoma Bacteriano , Biologia Sintética/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Corynebacterium glutamicum/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Frequência do Gene , Família Multigênica/genética , Fenótipo , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fatores de Transcrição/química , Fatores de Transcrição/genética
3.
J Bacteriol ; 198(16): 2204-18, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27274030

RESUMO

UNLABELLED: Corynebacterium glutamicum metabolizes sialic acid (Neu5Ac) to fructose-6-phosphate (fructose-6P) via the consecutive activity of the sialic acid importer SiaEFGI, N-acetylneuraminic acid lyase (NanA), N-acetylmannosamine kinase (NanK), N-acetylmannosamine-6P epimerase (NanE), N-acetylglucosamine-6P deacetylase (NagA), and glucosamine-6P deaminase (NagB). Within the cluster of the three operons nagAB, nanAKE, and siaEFGI for Neu5Ac utilization a fourth operon is present, which comprises cg2936, encoding a GntR-type transcriptional regulator, here named NanR. Microarray studies and reporter gene assays showed that nagAB, nanAKE, siaEFGI, and nanR are repressed in wild-type (WT) C. glutamicum but highly induced in a ΔnanR C. glutamicum mutant. Purified NanR was found to specifically bind to the nucleotide motifs A[AC]G[CT][AC]TGATGTC[AT][TG]ATGT[AC]TA located within the nagA-nanA and nanR-sialA intergenic regions. Binding of NanR to promoter regions was abolished in the presence of the Neu5Ac metabolism intermediates GlcNAc-6P and N-acetylmannosamine-6-phosphate (ManNAc-6P). We observed consecutive utilization of glucose and Neu5Ac as well as fructose and Neu5Ac by WT C. glutamicum, whereas the deletion mutant C. glutamicum ΔnanR simultaneously consumed these sugars. Increased reporter gene activities for nagAB, nanAKE, and nanR were observed in cultivations of WT C. glutamicum with Neu5Ac as the sole substrate compared to cultivations when fructose was present. Taken together, our findings show that Neu5Ac metabolism in C. glutamicum is subject to catabolite repression, which involves control by the repressor NanR. IMPORTANCE: Neu5Ac utilization is currently regarded as a common trait of both pathogenic and commensal bacteria. Interestingly, the nonpathogenic soil bacterium C. glutamicum efficiently utilizes Neu5Ac as a substrate for growth. Expression of genes for Neu5Ac utilization in C. glutamicum is here shown to depend on the transcriptional regulator NanR, which is the first GntR-type regulator of Neu5Ac metabolism not to use Neu5Ac as effector but relies instead on the inducers GlcNAc-6P and ManNAc-6P. The identification of conserved NanR-binding sites in intergenic regions within the operons for Neu5Ac utilization in pathogenic Corynebacterium species indicates that the mechanism for the control of Neu5Ac catabolism in C. glutamicum by NanR as described in this work is probably conserved within this genus.


Assuntos
Corynebacterium glutamicum/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Acetilglucosamina/análogos & derivados , Corynebacterium glutamicum/genética , DNA Bacteriano , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Deleção de Genes , Glucosamina/metabolismo , Manosefosfatos , Metabolismo , Ácido N-Acetilneuramínico/genética , Regiões Promotoras Genéticas , Ligação Proteica
4.
Biotechnol J ; 10(2): 290-301, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25139579

RESUMO

For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application.


Assuntos
Corynebacterium glutamicum/crescimento & desenvolvimento , Genes Essenciais , Genoma Bacteriano , Corynebacterium glutamicum/genética , Engenharia Genética , Aptidão Genética , Família Multigênica , Filogenia , Deleção de Sequência
5.
Appl Microbiol Biotechnol ; 98(12): 5633-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668244

RESUMO

Sustainable supply of feedstock has become a key issue in process development in microbial biotechnology. The workhorse of industrial amino acid production Corynebacterium glutamicum has been engineered towards utilization of alternative carbon sources. Utilization of the chitin-derived aminosugar N-acetyl-glucosamine (GlcNAc) for both cultivation and production with C. glutamicum has hitherto not been investigated. Albeit this organism harbors the enzymes N-acetylglucosamine-6-phosphatedeacetylase and glucosamine-6P deaminase of GlcNAc metabolism (encoded by nagA and nagB, respectively) growth of C. glutamicum with GlcNAc as substrate was not observed. This was attributed to the lack of a functional system for GlcNAc uptake. Of the 17 type strains of the genus Corynebacterium tested here for their ability to grow with GlcNAc, only Corynebacterium glycinophilum DSM45794 was able to utilize this substrate. Complementation studies with a GlcNAc-uptake deficient Escherichia coli strain revealed that C. glycinophilum possesses a nagE-encoded EII permease for GlcNAc uptake. Heterologous expression of the C. glycinophilum nagE in C. glutamicum indeed enabled uptake of GlcNAc. For efficient GlcNac utilization in C. glutamicum, improved expression of nagE with concurrent overexpression of the endogenous nagA and nagB genes was found to be necessary. Based on this strategy, C. glutamicum strains for the efficient production of the amino acid L-lysine as well as the carotenoid lycopene from GlcNAc as sole substrate were constructed.


Assuntos
Acetilglucosamina/metabolismo , Carotenoides/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Lisina/metabolismo , Engenharia Metabólica , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Teste de Complementação Genética , Licopeno , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
6.
Biochim Biophys Acta ; 1828(4): 1230-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313454

RESUMO

Corynebacterium glutamicum is used in microbial biotechnology for the production of amino acids, in particular glutamate. The mechanism of glutamate excretion, however, is not yet fully understood. Recently, evidence was provided that the NCgl1221 gene product from C. glutamicum ATCC 13869, a MscS-type mechanosensitive efflux channel, is responsible for glutamate efflux [1]. The major difference of NCgl1221 and the homologous protein MscCG of C. glutamicum ATCC 13032 from Escherichia coli MscS and most other MscS-type proteins is the presence of an additional, 247 amino acid long C-terminal domain. By topology analysis, we show that this domain in MscCG carries a transmembrane segment. We have generated selected C-terminal truncations of MscCG, gain-of-function and loss-of-function constructs of both E. coli MscS and C. glutamicum MscCG, as well as fusion constructs of the two proteins. These mutant proteins were investigated for mechanosensitive efflux, MS channel activity, glutamate excretion and their impact on membrane potential. We provide evidence that the channel domain of MscCG mediates glutamate efflux in response to penicillin treatment, and that the E. coli MscS channel is to some extent able to function in a similar manner. We further show that the C-terminal domain of MscCG has a significant impact for function and/or regulation of MscCG. Significantly, a positive effect on glutamate efflux of the C-terminal extension of MscCG from C. glutamicum was also observed when fused to the E. coli MscS channel.


Assuntos
Proteínas de Bactérias/fisiologia , Corynebacterium glutamicum/fisiologia , Proteínas de Escherichia coli/fisiologia , Ácido Glutâmico/metabolismo , Canais Iônicos/fisiologia , Transporte Biológico , Técnicas de Patch-Clamp
7.
Appl Microbiol Biotechnol ; 97(4): 1679-87, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22854894

RESUMO

Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS(Glc) transport system to be responsible for glucosamine uptake in C. glutamicum. The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid L-lysine and the diamine putrescine from glucosamine was demonstrated.


Assuntos
Aminoácidos/biossíntese , Corynebacterium glutamicum/metabolismo , Glucosamina/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Mutação Puntual , Regiões Promotoras Genéticas
8.
FEMS Microbiol Lett ; 336(2): 131-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22924979

RESUMO

The ability to use the sialic acid, N-acetylneuraminic acid, Neu5Ac, as a nutrient has been characterized in a number of bacteria, most of which are human pathogens that encounter this molecule because of its presence on mucosal surfaces. The soil bacterium Corynebacterium glutamicum also has a full complement of genes for sialic acid catabolism, and we demonstrate that it can use Neu5Ac as a sole source of carbon and energy and isolate mutants with a much reduced growth lag on Neu5Ac. Disruption of the cg2937 gene, encoding a component of a predicted sialic acid-specific ABC transporter, results in a complete loss of growth of C. glutamicum on Neu5Ac and also a complete loss of [(14)C]-Neu5Ac uptake into cells. Uptake of [(14)C]-Neu5Ac is induced by pregrowth on Neu5Ac, but the additional presence of glucose prevents this induction. The demonstration that a member of the Actinobacteria can transport and catabolize Neu5Ac efficiently suggests that sialic acid metabolism has a physiological role in the soil environment.


Assuntos
Corynebacterium glutamicum/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Ordem dos Genes , Família Multigênica , Mutação , Microbiologia do Solo
9.
Plant Physiol ; 159(2): 606-17, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22535424

RESUMO

The transfer of fatty acids across biological membranes is a largely uncharacterized process, although it is essential at membranes of several higher plant organelles like chloroplasts, peroxisomes, or the endoplasmic reticulum. Here, we analyzed loss-of-function mutants of the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a model system to circumvent redundancy problems encountered in eukaryotic organisms. Cells deficient in the only cytoplasmic Synechocystis acyl-acyl carrier protein synthetase (SynAas) were highly resistant to externally provided α-linolenic acid, whereas wild-type cells bleached upon this treatment. Bleaching of wild-type cells was accompanied by a continuous increase of α-linolenic acid in total lipids, whereas no such accumulation could be observed in SynAas-deficient cells (Δsynaas). When SynAas was disrupted in the tocopherol-deficient, α-linolenic acid-hypersensitive Synechocystis mutant Δslr1736, double mutant cells displayed the same resistance phenotype as Δsynaas. Moreover, heterologous expression of SynAas in yeast (Saccharomyces cerevisiae) mutants lacking the major yeast fatty acid import protein Fat1p (Δfat1) led to the restoration of wild-type sensitivity against exogenous α-linolenic acid of the otherwise resistant Δfat1 mutant, indicating that SynAas is functionally equivalent to Fat1p. In addition, liposome assays provided direct evidence for the ability of purified SynAas protein to mediate α-[(14)C]linolenic acid retrieval from preloaded liposome membranes via the synthesis of [(14)C]linolenoyl-acyl carrier protein. Taken together, our data show that an acyl-activating enzyme like SynAas is necessary and sufficient to mediate the transfer of fatty acids across a biological membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Enxofre Ligases/metabolismo , Synechocystis/enzimologia , Ácido alfa-Linolênico/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Carbono-Enxofre Ligases/genética , DNA Bacteriano/genética , Resistência a Medicamentos , Transporte de Elétrons , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Recombinação Homóloga , Lipossomos/metabolismo , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Fenótipo , Fotossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Synechocystis/ultraestrutura , Fatores de Tempo , Ácido alfa-Linolênico/farmacologia , alfa-Tocoferol/metabolismo
10.
Biochim Biophys Acta ; 1817(2): 370-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22050934

RESUMO

A mutant of Corynebacterium glutamicum ATCC 13032 with a deletion of the atpBEFHAGDC genes encoding F(1)F(O)-ATP synthase was characterized. Whereas no growth was observed with acetate as sole carbon source, the ΔF(1)F(O) mutant reached 47% of the growth rate and 65% of the biomass of the wild type during shake-flask cultivation in glucose minimal medium. Initially, the mutant strain showed a strongly increased glucose uptake rate accompanied by a high oxygen consumption rate and pyruvate secretion into the medium. When oxygen became limiting, the glucose consumption rate was reduced below that of the wild type and pyruvate was consumed again. The ΔF(1)F(O) mutant had increased levels of b- and d-type cytochromes and a significantly increased proton motive force. Transcription of genes involved in central carbon metabolism was essentially unchanged, whereas genes for cytochrome bd oxidase, pyruvate:quinone oxidoreductase, oxidative stress response, and others showed increased mRNA levels. On the other hand, genes for amino acid biosynthesis and ribosomal proteins as well as many genes involved in transport displayed decreased mRNA levels. Several of the transcriptional changes were reflected at the protein level, but there were also discrepancies between the mRNA and protein levels suggesting some kind of posttranscriptional regulation. The results prove for the first time that F(1)F(O)-ATP synthase and oxidative phosphorylation are in general not essential for growth of C. glutamicum.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/fisiologia , Regulação Bacteriana da Expressão Gênica , Fosforilação Oxidativa , ATPases Translocadoras de Prótons/genética , Ácidos/metabolismo , Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Glicogênio/metabolismo , Organismos Geneticamente Modificados , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Proteoma/análise , Proteoma/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Deleção de Sequência
11.
PLoS One ; 6(12): e28498, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163027

RESUMO

Recent studies have indicated that nitrogen availability can be an important determinant of primary production in freshwater lakes and that herbivore growth can be limited by low dietary nitrogen availability. Furthermore, a lack of specific essential nitrogenous biochemicals (such as essential amino acids) might be another important constraint on the fitness of consumers. This might be of particular importance for cladoceran zooplankton, which can switch between two alternative reproductive strategies--the production of subitaneously developing and resting eggs. Here, we hypothesize that both the somatic growth and the type of reproduction of the aquatic keystone herbivore Daphnia is limited by the availability of specific essential amino acids in the diet. In laboratory experiments, we investigated this hypothesis by feeding a high quality phytoplankton organism (Cryptomonas) and a green alga of moderate nutritional quality (Chlamydomonas) to a clone of Daphnia pulex with and without the addition of essential amino acids. The somatic growth of D. pulex differed between the algae of different nutritional quality, but not dependent on the addition of dissolved amino acids. However, in reproduction experiments, where moderate crowding conditions at saturating food quantities were applied, addition of the essential amino acids arginine and histidine (but not lysine and threonine) increased the total number and the developmental stage of subitaneous eggs. While D. pulex did not produce resting eggs on Cryptomonas, relatively high numbers of resting eggs were released on Chlamydomonas. When arginine and histidine were added to the green algal diet, the production of resting eggs was effectively suppressed. This demonstrates the high, but previously overlooked importance of single essential amino acids for the reproductive strategy of the aquatic keystone herbivore Daphnia.


Assuntos
Aminoácidos Essenciais/metabolismo , Daphnia/fisiologia , Dieta , Aminoácidos/metabolismo , Animais , Chlamydomonas/genética , Chlamydomonas/metabolismo , Criptófitas/genética , Daphnia/metabolismo , Ecossistema , Cadeia Alimentar , Água Doce , Modelos Biológicos , Nitrogênio/metabolismo , Dinâmica Populacional , Reprodução , Zooplâncton/metabolismo
12.
Arch Microbiol ; 193(11): 787-96, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21614527

RESUMO

Potassium accumulation is an essential aspect of bacterial response to diverse stress situations; consequently its uptake plays a pivotal role. Here, we show that the Gram-positive soil bacterium Corynebacterium glutamicum which is employed for the large-scale industrial production of amino acids requires potassium under conditions of ionic and non-ionic osmotic stress. Besides the accumulation of high concentrations of potassium contributing significantly to the osmotic potential of the cytoplasm, we demonstrate that glutamate is not the counter ion for potassium under these conditions. Interestingly, potassium is required for the activation of osmotic stress-dependent expression of the genes betP and proP. The Kup-type potassium transport system which is present in C. glutamicum in addition to the potassium channel CglK does not contribute to potassium uptake at conditions of hyperosmotic stress. Furthermore, we established a secondary carrier of the KtrAB type from C. jeikeium in C. glutamicum thus providing an experimental comparison of channel- and carrier-mediated potassium uptake under osmotic stress. While at low potassium availability, the presence of the KtrAB transporter improves both potassium accumulation and growth of C. glutamicum upon osmotic stress, at proper potassium supply, the channel CglK is sufficient.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Citoplasma/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácido Glutâmico/metabolismo , Transporte de Íons , Concentração Osmolar , Pressão Osmótica , Cloreto de Sódio/farmacologia , Sorbitol/farmacologia , Estresse Fisiológico
13.
Biochim Biophys Acta ; 1807(4): 444-50, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21295539

RESUMO

Metal ion uptake is crucial for all living cells and an essential part of cellular bioenergetic homeostasis. In this study the uptake and the impact of the most abundant internal cation, potassium, were investigated in Actinobacteria, a group of high G+C Gram-positives with a number of prominent biotechnologically and medically important members. Genome analyses revealed a variety of different potassium uptake systems in this monophyletic group ranging from potassium channels common in virtually all Actinobacteria to different active carriers that were present predominantly in pathogenic members able to cope with various stress conditions. By applying Corynebacterium glutamicum as model system we provide experimental evidence that under optimal conditions a potassium channel is sufficient in bacteria for the maintenance of internal pH and membrane potential ensuring survival of cells under stress conditions. Under potassium limitation, however, viability of C. glutamicum was increased under acidic stress or during desiccation when a functional KtrAB potassium transporter from the pathogen Corynebacterium jeikeium was heterologously expressed. We provide experimental evidence that the KtrAB mediated enhanced potassium accumulation improved maintenance of internal pH and membrane potential. The results indicate that the occurrence of active potassium transport systems correlates with an improved potassium-dependent bioenergetic homeostasis and survival of bacterial cells under stress conditions.


Assuntos
Corynebacterium glutamicum/metabolismo , Homeostase , Potenciais da Membrana , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Filogenia
14.
Appl Microbiol Biotechnol ; 89(2): 327-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20809072

RESUMO

Succinic acid is excreted during anaerobiosis by many bacteria, and manifold applications are known making the biotechnological production of succinate attractive. Although the pathways for succinate formation are known, succinate export is not understood in most of the succinate producing bacteria. Here, we present a bioinformatic approach for identification of a putative succinate export system in Corynebacterium glutamicum. The subsequent screening revealed that a mutant in the gene cg2425 is impaired in succinate production or transport under anaerobic conditions. A function of the Cg2425 protein as import system was excluded. In contrast, a role of the Cg2425 protein as succinate export system was indicated by accumulation of increased amounts of internal succinate under anaerobic conditions in a Cg2425-dependent manner and a concomitant impairment of external succinate accumulation. In conclusion, we propose that Cg2425 participates in succinate export in C. glutamicum and suggest the name SucE for the protein.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Proteínas de Membrana/metabolismo , Ácido Succínico/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Corynebacterium glutamicum/classificação , Corynebacterium glutamicum/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia
15.
J Biol Chem ; 286(5): 3235-41, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21123179

RESUMO

The de novo synthesis of compatible solutes is an essential part of the cellular osmotic stress response. Upon an osmotic challenge, it is regulated by the immediate biochemical activation of preformed enzymes and by activation of gene expression. Whereas the transcriptional response has been investigated intensively, the mechanisms by which enzymes are activated in osmotic stress situations are still elusive. Here, we address this topic for the moderately halotolerant cyanobacterium Synechocystis sp. PCC 6803, which synthesizes glucosylglycerol as a compatible solute. The key enzyme of the glucosylglycerol pathway (GgpS) is inhibited by nucleic acids in a sequence- and length-independent manner. The protein binds DNA, RNA, and heparin via a salt-dependent electrostatic interaction with the negatively charged backbone of the polyanions. Mechanistically, DNA binding to the enzyme causes noncompetitive inhibition of GgpS activity. The interaction of the enzyme and nucleic acids under in vivo conditions is indicated by the co-purification of both after cross-linking in Synechocystis cells. We propose a novel mechanism of activity regulation by the nonspecific salt-dependent binding of an enzyme to nucleic acids.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Nucleicos/metabolismo , Pressão Osmótica , Sais/farmacologia , Synechocystis/fisiologia , Cianobactérias , Proteínas de Ligação a DNA/metabolismo , Glucosídeos/biossíntese , Ligação Proteica/efeitos dos fármacos
16.
Plant Cell ; 22(8): 2594-617, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20798327

RESUMO

Restriction of phosphoenolpyruvate (PEP) supply to plastids causes lethality of female and male gametophytes in Arabidopsis thaliana defective in both a phosphoenolpyruvate/phosphate translocator (PPT) of the inner envelope membrane and the plastid-localized enolase (ENO1) involved in glycolytic PEP provision. Homozygous double mutants of cue1 (defective in PPT1) and eno1 could not be obtained, and homozygous cue1 heterozygous eno1 mutants [cue1/eno1(+/-)] exhibited retarded vegetative growth, disturbed flower development, and up to 80% seed abortion. The phenotypes of diminished oil in seeds, reduced flavonoids and aromatic amino acids in flowers, compromised lignin biosynthesis in stems, and aberrant exine formation in pollen indicate that cue1/eno1(+/-) disrupts multiple pathways. While diminished fatty acid biosynthesis from PEP via plastidial pyruvate kinase appears to affect seed abortion, a restriction in the shikimate pathway affects formation of sporopollonin in the tapetum and lignin in the stem. Vegetative parts of cue1/eno1(+/-) contained increased free amino acids and jasmonic acid but had normal wax biosynthesis. ENO1 overexpression in cue1 rescued the leaf and root phenotypes, restored photosynthetic capacity, and improved seed yield and oil contents. In chloroplasts, ENO1 might be the only enzyme missing for a complete plastidic glycolysis.


Assuntos
Arabidopsis/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Fosfoenolpiruvato/metabolismo , Plastídeos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Mutação , Fenótipo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Plastídeos/genética , Pólen/ultraestrutura
17.
Biochim Biophys Acta ; 1798(11): 2141-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20599688

RESUMO

Based on sequence similarity, the mscCG gene product of Corynebacterium glutamicum belongs to the family of MscS-type mechanosensitive channels. In order to investigate the physiological significance of MscCG in response to osmotic shifts in detail, we studied its properties using both patch-clamp techniques and betaine efflux kinetics. After heterologous expression in an Escherichiacoli strain devoid of mechanosensitive channels, in patch-clamp analysis of giant E. coli spheroplasts MscCG showed the typical pressure dependent gating behavior of a stretch-activated channel with a current/voltage dependence indicating a strongly rectifying behavior. Apart from that, MscCG is characterized by significant functional differences with respect to conductance, ion selectivity and desensitation behavior as compared to MscS from E. coli. Deletion and complementation studies in C. glutamicum showed a significant contribution of MscCG to betaine efflux in response to hypoosmotic conditions. A detailed analysis of concomitant betaine uptake (by the betaine transporter BetP) and efflux (by MscCG) under hyperosmotic conditions indicates that MscCG may act in osmoregulation in C. glutamicum by fine-tuning the steady state concentration of compatible solutes in the cytoplasm which are accumulated in response to hyperosmotic stress.


Assuntos
Proteínas de Bactérias/fisiologia , Corynebacterium glutamicum/fisiologia , Canais Iônicos/fisiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Dados de Sequência Molecular , Simportadores , Equilíbrio Hidroeletrolítico
18.
BMC Genomics ; 10: 621, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20025733

RESUMO

BACKGROUND: The maintenance of internal pH in bacterial cells is challenged by natural stress conditions, during host infection or in biotechnological production processes. Comprehensive transcriptomic and proteomic analyses has been conducted in several bacterial model systems, yet questions remain as to the mechanisms of pH homeostasis. RESULTS: Here we present the comprehensive analysis of pH homeostasis in C. glutamicum, a bacterium of industrial importance. At pH values between 6 and 9 effective maintenance of the internal pH at 7.5 +/- 0.5 pH units was found. By DNA microarray analyses differential mRNA patterns were identified. The expression profiles were validated and extended by 1D-LC-ESI-MS/MS based quantification of soluble and membrane proteins. Regulators involved were identified and thereby participation of numerous signaling modules in pH response was found. The functional analysis revealed for the first time the occurrence of oxidative stress in C. glutamicum cells at neutral and low pH conditions accompanied by activation of the iron starvation response. Intracellular metabolite pool analysis unraveled inhibition of the TCA and other pathways at low pH. Methionine and cysteine synthesis were found to be activated via the McbR regulator, cysteine accumulation was observed and addition of cysteine was shown to be toxic under acidic conditions. CONCLUSIONS: Novel limitations for C. glutamicum at non-optimal pH values were identified by a comprehensive analysis on the level of the transcriptome, proteome, and metabolome indicating a functional link between pH acclimatization, oxidative stress, iron homeostasis, and metabolic alterations. The results offer new insights into bacterial stress physiology and new starting points for bacterial strain design or pathogen defense.


Assuntos
Corynebacterium glutamicum/genética , Homeostase/genética , Ferro/metabolismo , Metionina/biossíntese , Estresse Oxidativo/genética , Aclimatação , Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Metaboloma , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/metabolismo , RNA Bacteriano/genética
19.
J Bacteriol ; 191(17): 5480-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581365

RESUMO

Transporters of the dicarboxylate amino acid-cation symporter family often mediate uptake of C(4)-dicarboxylates, such as succinate or l-malate, in bacteria. A member of this family, dicarboxylate transporter A (DctA) from Corynebacterium glutamicum, was characterized to catalyze uptake of the C(4)-dicarboxylates succinate, fumarate, and l-malate, which was inhibited by oxaloacetate, 2-oxoglutarate, and glyoxylate. DctA activity was not affected by sodium availability but was dependent on the electrochemical proton potential. Efficient growth of C. glutamicum in minimal medium with succinate, fumarate, or l-malate as the sole carbon source required high dctA expression levels due either to a promoter-up mutation identified in a spontaneous mutant or to ectopic overexpression. Mutant analysis indicated that DctA and DccT, a C(4)-dicarboxylate divalent anion/sodium symporter-type transporter, are the only transporters for succinate, fumarate, and l-malate in C. glutamicum.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Corynebacterium glutamicum/genética , Transportadores de Ácidos Dicarboxílicos/genética , Fumaratos/metabolismo , Deleção de Genes , Teste de Complementação Genética , Malatos/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Ácido Succínico/metabolismo
20.
Metab Eng ; 11(3): 178-83, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19558963

RESUMO

The highly productive whole-cell biotransformation of D-fructose to D-mannitol with recombinant, resting cells of Escherichia coli BL21(DE3) requires the combined expression of mdh, fdh and glf which encode mannitol and formate dehydrogenases and a sugar facilitator, respectively. However, long-term stability of the system was restricted, possibly due to loss of the cofactor NAD, high concentrations of formate, formation of CO(2) affecting the internal pH of the cells, accumulation of high intracellular concentrations of D-mannitol, and export of D-mannitol. Downstream of the mdh gene of Leuconostoc pseudomesenteroides, we identified an open reading frame encoding for a putative mannitol permease. The gene was cloned and expressed in E. coli. Biochemical analyses revealed an activity as secondary carrier for D-fructose. Therefore, the carrier was named FupL and participation in D-mannitol transport was excluded. In biotransformation experiments, the productivity of D-mannitol formation obtained with the strain expressing the additional fupL gene was enhanced by 20%.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono/fisiologia , Escherichia coli/metabolismo , Leuconostoc/metabolismo , Manitol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , NAD/fisiologia , Proteínas de Bactérias/genética , Biotransformação , Escherichia coli/genética , Formiatos/metabolismo , Leuconostoc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...