Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurol ; 31(2): e16112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909802

RESUMO

BACKGROUND AND PURPOSE: In patients with acute ischaemic stroke (AIS), haemorrhagic transformation (HT) following endovascular treatment (EVT) is associated with poor functional outcome. However, the impact of asymptomatic HT, not linked to neurological deterioration in the acute phase, is unknown. We aimed to investigate the impact of asymptomatic PH1 (aPH1) and PH2 (aPH2) subtypes of HT on the functional outcome of patients treated with EVT. METHODS: We conducted a retrospective study of patients with AIS who were consecutively admitted to our comprehensive stroke centre between January 2019 and December 2022, and who underwent EVT. We collected clinical, radiological, and procedural data. HTs were categorized according to the Heidelberg classification. The primary outcome was the shift on the modified Rankin Scale (mRS) at 3 months of follow-up. We performed bivariate and multivariable ordinal regression analyses to test the association between aPH1/aPH2 and the primary outcome. RESULTS: We included 314 patients (mean age = 72.5 years [SD = 13.6], 171 [54.5%] women). We detected 54 (17.2%) patients with HT; 23 (7.3%) were classified as PH2 (11 asymptomatic) and 17 (5.4%) as PH1 (16 asymptomatic). The adjusted common odds ratio for aPH2 of worsening 1 point on the 3-month mRS was 3.32 (95% confidence interval = 1.16-9.57, p = 0.026). No association was observed for aPH1. aPH2 was also independently associated with lower odds of achieving a favourable outcome (mRS = 0-2). Neither aPH1 nor aPH2 was associated with mortality. CONCLUSIONS: In patients with AIS treated with EVT, aPH2 is independently associated with unfavourable functional outcome.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Masculino , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/cirurgia , Isquemia Encefálica/complicações , Isquemia Encefálica/cirurgia , Estudos Retrospectivos , AVC Isquêmico/complicações , Hemorragia/etiologia , Procedimentos Endovasculares/efeitos adversos , Resultado do Tratamento , Trombectomia
2.
Brain ; 145(7): 2394-2406, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35213696

RESUMO

During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Teorema de Bayes , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Estudo de Associação Genômica Ampla , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Estados Unidos
3.
medRxiv ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33173895

RESUMO

During the first hours after stroke onset neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between NIH stroke scale (NIHSS) within six hours of stroke onset and NIHSS at 24h (ΔNIHSS). A total of 5,876 individuals from seven countries (Spain, Finland, Poland, United States, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of ΔNIHSS variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture than that of stroke risk. Seven loci (2p25.1, 2q31.2, 2q33.3, 4q34.3, 5q33.2, 6q26 and 7p21.1) were genome-wide significant and explained 2.1% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each loci. eQTL mapping and SMR indicate that ADAM23 (log Bayes Factor (LBF)=6.34) was driving the association for 2q33.3. Gene based analyses suggested that GRIA1 (LBF=5.26), which is predominantly expressed in brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated PARK2 (LBF=5.30) and ABCB5 (LBF=5.70) for the 6q26 and 7p21.1 loci. Human brain single nuclei RNA-seq indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23 , a pre-synaptic protein, and GRIA1 , a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provides the first evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischemic stroke. RESEARCH INTO CONTEXT: Evidence before this study: No previous genome-wide association studies have investigated the genetic architecture of early outcomes after ischemic stroke.Added Value of this study: This is the first study that investigated genetic influences on early outcomes after ischemic stroke using a genome-wide approach, revealing seven genome-wide significant loci. A unique aspect of this genetic study is the inclusion of all of the major ethnicities by recruiting from participants throughout the world. Most genetic studies to date have been limited to populations of European ancestry.Implications of all available evidence: The findings provide the first evidence that genes implicating excitotoxicity contribute to human acute ischemic stroke, and demonstrates proof of principle that GWAS of acute ischemic stroke patients can reveal mechanisms involved in ischemic brain injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...