Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 128: 102080, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33799143

RESUMO

Several studies have documented the interaction between the immune and endocrine systems as an effective defense strategy against tuberculosis, involving the production of several molecules and immunological processes. In this study, we determined the effect of cortisol and dehydroepiandrosterone (DHEA) on the production of antimicrobial peptides such as cathelicidin and human ß-defensin (HBD) -2, and HBD-3 and their effect on intracellular growth of Mycobacterium tuberculosis (Mtb) in lung epithelial cells and macrophages. Our results showed that DHEA promotes the production of these antimicrobial peptides in infected cells, correlating with the decrease of Mtb bacilli loads. These results suggest the use of exogenous DHEA as an adjuvant for tuberculosis therapy.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Desidroepiandrosterona/farmacologia , Hidrocortisona/farmacologia , Mycobacterium tuberculosis , beta-Defensinas/biossíntese , Células A549 , Células Epiteliais/microbiologia , Humanos , Macrófagos/microbiologia , Células THP-1 , Catelicidinas
2.
Tuberculosis (Edinb) ; 127: 102026, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33262029

RESUMO

Several epidemiological studies have identified the cigarette smoke as a risk factor for the infection and development of tuberculosis. Nicotine is considered the main immunomodulatory molecule of the cigarette. In the present study, we evaluated the effect of nicotine in the growth of M. tuberculosis. Lung epithelial cells and macrophages were infected with M. tuberculosis and/or treated with nicotine. The results show that nicotine increased the growth of M. tuberculosis mainly in type II pneumocytes (T2P) but not in airway basal epithelial cells nor macrophages. Further, it was observed that nicotine decreased the production of ß-defensin-2, ß-defensin-3, and the cathelicidin LL-37 in all the evaluated cells at 24 and 72 h post-infection. The modulation of the expression of antimicrobial peptides appears to be partially mediated by the nicotinic acetylcholine receptor α7 since the blockade of this receptor partially reverted the production of antimicrobial peptides. In summary, it was found that nicotine decreases the production of HBD-2, HBD-3, and LL-37 in T2P during the infection with M. tuberculosis promoting its intracellular growth.


Assuntos
Células Epiteliais Alveolares/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Tuberculose Pulmonar/microbiologia , Células A549 , Células Epiteliais Alveolares/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Carga Bacteriana , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Pulmonar/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , beta-Defensinas/metabolismo , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...