Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 30(12): 2384-2398, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31575700

RESUMO

BACKGROUND: The primary site of damage during AKI, proximal tubular epithelial cells, are highly metabolically active, relying on fatty acids to meet their energy demands. These cells are rich in mitochondria and peroxisomes, the two organelles that mediate fatty acid oxidation. Emerging evidence shows that both fatty acid pathways are regulated by reversible posttranslational modifications, particularly by lysine acylation. Sirtuin 5 (Sirt5), which localizes to both mitochondria and peroxisomes, reverses post-translational lysine acylation on several enzymes involved in fatty acid oxidation. However, the role of the Sirt5 in regulating kidney energy metabolism has yet to be determined. METHODS: We subjected male Sirt5-deficient mice (either +/- or -/-) and wild-type controls, as well as isolated proximal tubule cells, to two different AKI models (ischemia-induced or cisplatin-induced AKI). We assessed kidney function and injury with standard techniques and measured fatty acid oxidation by the catabolism of 14C-labeled palmitate to 14CO2. RESULTS: Sirt5 was highly expressed in proximal tubular epithelial cells. At baseline, Sirt5 knockout (Sirt5-/- ) mice had modestly decreased mitochondrial function but significantly increased fatty acid oxidation, which was localized to the peroxisome. Although no overt kidney phenotype was observed in Sirt5-/- mice, Sirt5-/- mice had significantly improved kidney function and less tissue damage compared with controls after either ischemia-induced or cisplatin-induced AKI. This coincided with higher peroxisomal fatty acid oxidation compared with mitochondria fatty acid oxidation in the Sirt5-/- proximal tubular epithelial cells. CONCLUSIONS: Our findings indicate that Sirt5 regulates the balance of mitochondrial versus peroxisomal fatty acid oxidation in proximal tubular epithelial cells to protect against injury in AKI. This novel mechanism might be leveraged for developing AKI therapies.


Assuntos
Injúria Renal Aguda/metabolismo , Ácidos Graxos/metabolismo , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Sirtuínas/fisiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Cisplatino/toxicidade , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Sirtuínas/deficiência , Sirtuínas/genética
2.
J Biol Chem ; 292(24): 10239-10249, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28458255

RESUMO

SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro, succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5-/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5-/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5-/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function.


Assuntos
Cardiolipinas/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Hepatócitos/enzimologia , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo , Substituição de Aminoácidos , Animais , Cardiolipinas/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Mutação , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sirtuínas/química , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...