Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(1): 445-460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37038661

RESUMO

General anxiety disorders are among the most prevalent mental health problems worldwide. The emergence and development of anxiety disorders can be due to genetic (30-50%) or non-genetic (50-70%) factors. Despite medical progress, available pharmacotherapies are sometimes ineffective or can cause undesirable side effects. Thus, it becomes necessary to discover new safe and effective drugs against anxiety. This study evaluated the anxiolytic effect in adult zebrafish (Danio rerio) of a natural pyrroloformamide (PFD), N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)-N-methylformamide, isolated from a Streptomyces sp. bacterium strain recovered from the ascidian Eudistoma vannamei. The complete structure of PFD was determined by a detailed NMR analysis, including 1H-13C and 1H-15N-HBMC data. In addition, conformational and DFT computational studies also were performed. A group of fishes (n = 6) was treated orally with PFD (0.1, 0.5 and 1.0 mg/mL; 20 µL) and subjected to locomotor activity and light/dark tests, as well as, acute toxicity 96 h. The involvement of the GABAergic and serotonergic (5-HT) systems was investigated using flumazenil (a silent modulator of GABA receptor) and 5-HT1, 5-HT2A/2C and 5-HTR3A/3B receptors antagonists, known as pizotifen, granisetron and cyproheptadine, respectively. PFD was nontoxic, reduced locomotor activity and promoted the anxiolytic effect in zebrafish. Flumazenil did not inhibit the anxiolytic effect of the PFD via the GABAergic system. This effect was reduced by a pretreatment with pizotifen and granisetron, and was not reversed after treatment with cyproheptadine. Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.Communicated by Ramaswamy H. Sarma.


Pyrroloformamide (PFD), isolated from the marine Streptomyces sp. associated ascidian Eudistoma vannamei, showed no toxicity in adult zebrafish but reduced its locomotor activity.The structural elucidation of PFD was determined by the analysis of 1D and 2D NMR and HRESIMS data.The density functional theory (DFT) study confirmed the existence of two conformers as determined by NMR spectra.The serotonergic system modulated the anxiolytic effect of PFD via the 5-HT receptor in adult zebrafish.Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.


Assuntos
Ansiolíticos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Peixe-Zebra , Serotonina , Flumazenil/farmacologia , Pizotilina , Simulação de Acoplamento Molecular , Granisetron , Ciproeptadina
2.
J Mol Model ; 29(5): 165, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37117952

RESUMO

Chagas disease (CD) is a tropical disease caused by the parasite Trypanosoma cruzi, transmitted by the barber insect. Currently, there are approximately 7 million infected people in the world, and it is estimated that 70 million people could contract this disease. The anacardic acid (AA) showed effectiveness in in silico and in vitro tests. The antichagasic potential of five sulfonamide molecules, derived from anacardic acid, was evaluated from a molecular approach based on the density functional theory (DFT), molecular dynamics (MD), and molecular docking (docking) calculations. Methyl 2-methoxy-6- (8- (methylsulfonamide) octyl) benzoate (SA1); 2-methoxy-6- (8- (phenylsulfonamide) octyl) benzoate (SA2); methyl 2-methoxy-6- (8- (2methylphenyl sulfonamide) octyl) benzoate (SA3); methyl 2-methoxy-6- (8-(methylphenylsulfonamide)octyl)benzoate (SA4); methyl2-(8-(2,5-dimethylphenylsulfonamide)octyl)-6-methoxybenzoate (SA5) were the investigated molecules. The DFT calculations were performed using the B3LYP/6-311+G (d, p) level of theory. The global and local reactivity data showed that SA1 shows the highest molecular reactivity, while SA2 is the most stable derivative. In addition, the structures of investigated molecules were confirmed by the linear correlations higher than 0.98 displayed between the experimental and calculated spectroscopic data (IR and NMR). Molecular docking of the molecules showed a greater prominence for the SA1, SA2, and SA4 molecules in the results of distances of ligand-cruzain. In molecular dynamics, SA2 obtained better stability due to greater interactions with important amino acids of cruzain.


Assuntos
Ácidos Anacárdicos , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Teoria da Densidade Funcional , Ácidos Anacárdicos/farmacologia , Espectroscopia de Ressonância Magnética , Sulfonamidas
3.
Fundam Clin Pharmacol ; 37(1): 163-173, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36082507

RESUMO

Chalcones are present in a wide variety of plants, having in their structure two aromatic rings that are linked together by a chain composed of three carbon atoms with α, ß-unsaturated to carbonyl system. Bacteria have several drug resistance mechanisms, among them the efflux pump; this mechanism, when active, is able to expel different compounds from inside bacterial cells. Several efflux pumps have already been identified for Staphylococcus aureus bacteria, including MepA and NorA. Many chalcones have been isolated and identified with various activities, such as antimicrobial. In view of this, this article aimed to evaluate the antibiotic modifying effect of chalcone (E)-1-(2-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one against S. aureus carrier of NorA and MepA efflux pump. Regarding the antibiotic, there was a synergism when associated with ciprofloxacin in SA-K2068 strain, showing this chalcone as an alternative to reverse the resistance to this medicine. The physicochemical properties calculated were fundamental in the description of the predicted pharmacokinetic properties. Despite the mutagenic risk caused by the metabolic activation of nitrochalcone, it is possible to notice a pharmacological principle in a longer half-life for the performance of biological activities. The compound has a good bioavailability, as it is highly absorbed in the intestine and easily transported by plasma proteins, in addition to not presenting neurotoxic, hepatotoxic, and cardiotoxic damage.


Assuntos
Chalcona , Chalconas , Infecções Estafilocócicas , Humanos , Norfloxacino/farmacologia , Ciprofloxacina/farmacologia , Staphylococcus aureus , Etídio/metabolismo , Etídio/farmacologia , Chalcona/farmacologia , Chalcona/metabolismo , Chalconas/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
4.
Microb Pathog ; 170: 105697, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926804

RESUMO

The prevalence of multidrug-resistant (MDR) bacteria and the limited efficacy of current available antibiotics cause every year approximately 700 000 deaths per year. This study aimed to evaluate the anti-inflammatory effect and antibacterial potential of the ibuprofen derivative Methyl 2-(-4-isobutylphenyl)propanoate (MET-IBU). The molecular structure of MET-IBU was confirmed by Nuclear Magnetic Resonance (NMR) and, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) spectroscopy. Our in vivo study using adult zebrafish model demonstrated that the ibuprofen derivative MET-IBU also possesses anti-inflammatory effect, and in vitro antibacterial activity assays showed that in the association of ampicillin, norfloxacin, and gentamicin with MET-IBU occurred reduction in the minimum inhibitory concentration (MIC) for MDR bacterial strains of Escherichia coli 06 and Staphylococcus aureus 10, indicating a potentiating in the growth inhibition of these pathogenic bacteria. Regarding the strain of Staphylococcus aureus K2068 (overexpressing mepA gene), a potentiation of ethidium bromide was found in the association with MET-IBU, indicating the action of this compound on the efflux pump mechanism present in this strains. This result corroborates the molecular docking study that indicated a high affinity of the MET-IBU with the MepA efflux pump. It was also noticed an antibiotic potentiating activity in the association MET-IBU with norfloxacin against strains of Staphylococcus aureus 1199B (overexpressing norA gene) when compared to the norfloxacin control. This enhanced antibiotic effect of MET-IBU is associated with a second resistance mechanism, which is due to the modification in the topoisomerase enzyme. These results bring attention to the ibuprofen derivative MET-IBU as possible candidate for the development of new options for the treatment of bacterial infections with protective anti-inflammatory action.


Assuntos
Infecções por Escherichia coli , Infecções Estafilocócicas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Escherichia coli/metabolismo , Ibuprofeno/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Norfloxacino/química , Norfloxacino/farmacologia , Propionatos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Peixe-Zebra
5.
Fundam Clin Pharmacol ; 36(3): 486-493, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34989452

RESUMO

Globally, plant-derived medicines have been playing an increasing and relevant role in the treatment of several diseases, thus fostering the search for new bioactive substances. Among the various families of plants studied, those of the Combretum genus can be highlighted since they are widely used in folk medicine for the treatment of hepatitis, malaria, respiratory infections, cancer, skin hemorrhage, and anxiety. Phytochemical studies carried out on species of the Combretum genus demonstrated the presence of several classes of bioactive chemical compounds, including the triterpene 3ß,6ß,16ß-trihydroxilup-20(29)-ene (CLF-1). In this perspective, the objective of this review was to gather all pharmacological activities attributed to the CLF-1 triterpene, highlighting its importance for the pharmaceutical industry. The research was performed in scientific databases such as PubMed, SciELO, LILACS, SciFinder and Science Direct. The literature indicates a great pharmacological potential of CLF-1, evidencing its antioxidant, anti-inflammatory, antiviral, antiparasitic, antinociceptive, healing, and antibacterial action, antinociceptive and antitumor effect. Therefore, based on the different research above, it is plausible to consider CLF-1, obtained from different parts of the C. leprosum plant, as a molecule with biotechnological potential that may contribute to the development of new drugs and, consequently, in the treatment of various human pathologies.


Assuntos
Combretum , Triterpenos , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Combretum/química , Etnofarmacologia , Humanos , Extratos Vegetais/farmacologia , Triterpenos/farmacologia
6.
J Biomol Struct Dyn ; 40(23): 12785-12799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34528866

RESUMO

The use of the bacterial efflux pump mechanism to reduce the concentrations of antibiotics in the intracellular to the extracellular region is one of the main mechanisms by which bacteria acquire resistance to antibiotics. The present study aims to evaluate the antibacterial activity of the α,ß-amyrin mixture isolated from Protium heptaphyllum against the multidrug-resistant strains of Escherichia coli 06 and Staphylococcus aureus 10, and to verify the inhibition of the efflux resistance mechanisms against the strains of S. aureus 1199B and K2068, carrying the NorA and MepA efflux pumps, respectively. The α,ß-amyrin did not show clinically relevant direct bacterial activity. However, the α,ß-amyrin when associated with the gentamicin antibiotic presented synergistic effect against the multidrug-resistant bacterial strain of S. aureus 10. In strains with efflux pumps, α,ß-amyrin was able to inhibit the action of the efflux protein NorA against Ethidium Bromide. However, this inhibitory effect was not observed in the MepA efflux pump. In addition, when evaluating the effect of standard efflux pump inhibitors, clorptomazine and CCCP, α,ß-amyrin showed a decrease in MIC, demonstrating the presence of the efflux mechanism through synergism. Docking studies indicate that α, ß-amyrin have a higher affinity energy to MepA, and NorA than ciprofloxacin and norfloxacin. Also, α, ß-amyrin bind to the same region of the binding site as these antibiotics. It was concluded that the α, ß-amyrin has the potential to increase antibacterial activity with the association of antibiotics, together with the ability to be a strong candidate for an efflux pump inhibitor.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus , Antibacterianos/química , Norfloxacino/farmacologia , Norfloxacino/química , Norfloxacino/metabolismo , Proteínas de Bactérias/química , Testes de Sensibilidade Microbiana
7.
J Biomol Struct Dyn ; 40(22): 12302-12315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34436980

RESUMO

Chagas disease infects approximately seven million people worldwide. Benznidazole is effective only in the acute phase of the disease, with an average cure rate of 80% between acute and recent cases. Therefore, there is an urgent need to find new bioactive substances that can be effective against parasites without causing so many complications to the host. In this study, the triterpene 3ß-6ß-16ß-trihydroxilup-20 (29)-ene (CLF-1) was isolated from Combretum leprosum, and its molecular structure was determined by NMR and infrared spectroscopy. The CLF-1 was also evaluated in vitro and in silico as potential trypanocidal agent against epimastigote and trypomastigote forms of Trypanosoma cruzi (Y strain). The CLF-1 demonstrated good results highlighted by lower IC50 (76.0 ± 8.72 µM, 75.1 ± 11.0 µM, and 70.3 ± 45.4 µM) for epimastigotes at 24, 48 and 72 h, and LC50 (71.6 ± 11.6 µM) for trypomastigotes forms. The molecular docking study shows that the CLF-1 was able to interact with important TcGAPDH residues, suggesting that this natural compound may preferentially exert its effect by compromising the glycolytic pathway in T. cruzi. The ADMET study together with the MTT results indicated that the CLF-1 is well-absorbed in the intestine and has low toxicity. Thus, this work adds new evidence that CLF-1 can potentially be used as a candidate for the development of new options for the treatment of Chagas disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Chagas , Combretum , Triterpenos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Extratos Vegetais/química , Combretum/química , Triterpenos/farmacologia , Triterpenos/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
8.
Heliyon ; 7(1): e06079, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553750

RESUMO

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, with approximately 6-7 million people infected worldwide, becoming a public health problem in tropical countries, thus generating an increasing demand for the development of more effective drugs, due to the low efficiency of the existing drugs. Aiming at the development of a new antichagasic pharmacological tool, the density functional theory was used to calculate the reactivity descriptors of amentoflavone, a biflavonoid with proven anti-trypanosomal activity in vitro, as well as to perform a study of interactions with the enzyme cruzain, an enzyme key in the evolutionary process of T-cruzi. Structural properties (in solvents with different values of dielectric constant), the infrared spectrum, the frontier orbitals, Fukui analysis, thermodynamic properties were the parameters calculated from DFT method with the monomeric structure of the apigenin used for comparison. Furthermore, molecular docking studies were performed to assess the potential use of this biflavonoid as a pharmacological antichagasic tool. The frontier orbitals (HOMO-LUMO) study to find the band gap of compound has been extended to calculate electron affinity, ionization energy, electronegativity electrophilicity index, chemical potential, global chemical hardness and global chemical softness to study the chemical behaviour of compound. The optimized structure was subjected to molecular Docking to characterize the interaction between amentoflavone and cruzain enzyme, a classic pharmacological target for substances with anti-gas activity, where significant interactions were observed with amino acid residues from each one's catalytic sites enzyme. These results suggest that amentoflavone has the potential to interfere with the enzymatic activity of cruzain, thus being an indicative of being a promising antichagasic agent.

9.
Inflamm Res ; 65(1): 43-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546610

RESUMO

OBJECTIVE AND DESIGN: This study had investigated the anti-inflammatory activity of a seed lectin (LAL) isolated from Lonchocarpus araripensis. MATERIAL/METHODS: LAL was purified by affinity chromatography (chitin column) and ion exchange chromatography (DEAE-Sephacel). In vitro LAL was tested for hemagglutinating activity against rabbit erythrocytes. In vivo LAL was assessed for the anti-inflammatory activity via intravenous injection (i.v.) in Swiss mice (25-30 g; n = 6/group) in models of paw edema and peritonitis. STATISTICAL ANALYSIS: ANOVA (p < 0.05). RESULTS: LAL revealed two bands of 30 and 60 kDa (SDS-PAGE) and exhibited hemagglutinating activity. LAL (10 mg/kg) inhibited the paw edema (77%) and vascular permeability (26%) induced by carrageenan, and the paw edema induced by serotonin (80%), bradykinin (49%), sodium nitroprusside (83%), TNF-α (75%) and PGE2 (64%). LAL also inhibited the neutrophil migration induced by fMLP (70%) or carrageenan (69%). The intravital microscopy showed that LAL inhibited rolling (83%) and adhesion (70%) of leukocytes. LAL anti-inflammatory effect was reversed by its association with N-acetyl-glucosamine. The nine-daily treatment with LAL (10 mg/kg; i.v.) showed no toxicity. CONCLUSION: The novel N-acetyl-D-glucosamine-binding lectin isolated from L. araripensis seeds presents anti-inflammatory effect involving the lectin domain and the inhibition of 5-HT, BK, PGE2, NO, TNF-α and leukocyte rolling and adhesion.


Assuntos
Acetilglucosamina/farmacologia , Anti-Inflamatórios/farmacologia , Fabaceae/química , Inflamação/prevenção & controle , Lectinas/farmacologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Edema/induzido quimicamente , Edema/prevenção & controle , Eritrócitos/efeitos dos fármacos , Hemaglutinação/efeitos dos fármacos , Técnicas In Vitro , Inflamação/patologia , Masculino , Camundongos , Peritonite/induzido quimicamente , Peritonite/prevenção & controle , Coelhos , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...